
Efficient Resistance Distance Computation: the Power of
Landmark-based Approaches

Meihao Liao

Beijing Institute of Technology

Beijing, China

mhliao@bit.edu.cn

Rong-Hua Li

Beijing Institute of Technology

Beijing, China

lironghuabit@126.com

Qiangqiang Dai

Beijing Institute of Technology

Beijing, China

qiangd66@gmail.com

Hongyang Chen

Zhejiang Lab

Zhejiang, China

dr.h.chen@ieee.org

Hongchao Qin

Beijing Institute of Technology

Beijing, China

qhc.neu@gmail.com

Guoren Wang

Beijing Institute of Technology

Beijing, China

wanggrbit@126.com

ABSTRACT
Resistance distance is a fundamental metric to measure the similar-

ity between two nodes in graphs which has been widely used in

many real-world applications. In this paper, we study two problems

on approximately computing resistance distance: (i) single-pair

query which aims at calculating the resistance distance 𝑟 (𝑠, 𝑡) for
a given pair of nodes (𝑠, 𝑡); and (ii) single-source query which

is to compute all the resistance distances 𝑟 (𝑠,𝑢) for all nodes 𝑢
in the graph with a given source node 𝑠 . Existing algorithms for

these two resistance distance query problems are often costly on

large graphs. To efficiently solve these problems, we first estab-

lish several interesting connections among resistance distance, a

new concept called 𝑣-absorbed random walk, random spanning

forests, and a newly-developed 𝑣-absorbed push procedure. Based

on such new connections, we propose three novel and efficient

sampling-based algorithms as well as a deterministic algorithm

for single-pair query; and we develop an online and two index-

based approximation algorithms for single-source query. We show

that the two index-based algorithms for single-source query take

almost the same running time as the algorithms for single-pair

query with the aid of a linear-size index. The striking feature of

all our algorithms is that they are allowed to select an easy-to-hit
node by random walks on the graph. Such an easy-to-hit landmark

node 𝑣 can make the 𝑣-absorbed random walk sampling, spanning

tree sampling, as well as the 𝑣-absorbed push more efficient, thus

significantly improving the performance of our algorithms. Exten-

sive experiments on 10 real-life datasets show that our algorithms

substantially outperform the state-of-the-art algorithms for two

resistance distance query problems in terms of both running time

and estimation errors.

ACM Reference Format:
Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao

Qin, and Guoren Wang. 2022. Efficient Resistance Distance Computation:

the Power of Landmark-based Approaches. In Proceedings of SIGMOD ’23:
International Conference on Management of Data (SIGMOD ’23). ACM, New

York, NY, USA, 18 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Proximity measures for nodes in networks play a crucial role in

many network analysis tasks. Notable proximity measures include

personalized PageRank [17, 24, 60], SimRank [23, 49], resistance

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

distance [12, 53, 57], and Katz similarity [28, 42]. All of these prox-

imity measures can be seen as measures based on random walks in

graphs, which have been widely used in many real-world applica-

tions including web search [24, 57], recommendation system [26],

and link predictions [31, 46].

In this paper, we focus on the resistance distance which is a

fundamental graph metric for measuring the node similarity. Given

a graph 𝐺 , we can regard it as an electrical network, where each

edge denotes a unit resistor and each node represents a junction

connecting resistors. The resistance distance between two nodes 𝑠, 𝑡 ,
denoted by 𝑟 (𝑠, 𝑡), is the effective resistance between 𝑠 and 𝑡 in the

electrical network𝐺 . It is well-known that the resistance distance

has many interesting combinatorial explanations [8]. For example,

𝑟 (𝑠, 𝑡) can be interpreted as the commute time of a random walk

starting from 𝑠 , visiting 𝑡 , and then going back to 𝑠 [44, 53]. It can
also be explained as the normalized number of spanning 2-forests

with 𝑠 and 𝑡 in two different connected components [8, 9], where

a spanning 2-forest is a spanning forest exactly containing two

connected components. Intuitively, based on these interpretations,

𝑟 (𝑠, 𝑡) is smaller (i.e., 𝑠 and 𝑡 having a short commute time thus they

are easy to hit each other, or 𝑠 and 𝑡 frequently co-occurring in the

same component of the spanning 2-forests), the more similar 𝑠 and
𝑡 are. In addition, compared to the other classic distance metrics

on graphs (e.g., shortest path), resistance distance is robust with

respect to noises (small perturbations on graphs, e.g. a few edges

are removed or inserted), as it takes all paths into consideration.

Due to such nice properties, resistance distance has been widely

used in many real-world applications, including recommendation

systems [20, 27], link prediction [46], query suggestion [41] and

query expansion [57] in information retrieval, graph kernels [43,

64], oblivious routing [48], and path planing in road networks [51].

Note that although it is argued in [54] that the resistance distance

𝑟 (𝑠, 𝑡) is dominated by
1

𝑑𝑠
+ 1

𝑑𝑡
in large random geometric graphs,

a simple correction will lead to a useful distance metric, which is

defined as 𝑟 (𝑠, 𝑡) =
√︃
𝑟 (𝑠, 𝑡) − 1

𝑑𝑠
− 1

𝑑𝑡
− (1

𝑑𝑠
− 1

𝑑𝑡
)2 [54]. Clearly,

the key to compute 𝑟 (𝑠, 𝑡) is to calculate 𝑟 (𝑠, 𝑡). Thus, in this paper,

we focus mainly on the resistance distance computation problem.

In addition, resistance distance is also widely used in solving many

theoretical problems including spectral sparsification of graphs

[52], spectral graph clustering [3], and max-flow computations [15],

where approximating all-pair resistance distances is an important

primitive for accelerating computation of these problems.

Although many efforts have been made on resistance distance

in both theory and applications, there are very few studies on de-

veloping efficient algorithms to compute the resistance distance on

large graphs. Most previous algorithms to calculate the resistance

distance are based on computing the pseudo-inverse of Laplacian

[8] which are very costly for large graphs. Recently, Peng et al. [44]

developed several efficient algorithms to estimate the resistance

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang

distance based on random walk sampling, and two of them are

the current state-of-the-art (SOTA) algorithms. Specifically, their

first SOTA algorithm is based on the commute time interpretation

of resistance distance. To estimate the resistance distance 𝑟 (𝑠, 𝑡),
their algorithm needs to simulate round-trip random walks from

𝑠 to 𝑡 and back to 𝑠 . Such an algorithm is very fast when 𝑟 (𝑠, 𝑡) is
small. However, when 𝑟 (𝑠, 𝑡) is large, this algorithm is inefficient

because in this case, it is not easy to obtain a round-trip random

walk. Their second SOTA algorithm is based on estimating the

𝐾-step transition probability matrix of the random walk. However,

the limitation of this algorithm is that on large graphs, it requires a

large 𝐾 to achieve a good estimation accuracy, thus rendering high

time overheads of the algorithm.

To overcome these issues, we propose four novel and efficient al-

gorithms to compute the resistance distance 𝑟 (𝑠, 𝑡) for a single-pair
of nodes (𝑠, 𝑡), based on several interesting and newly-established

connections among resistance distance, 𝑣-absorbed random walk,

spanning 2-forests, and 𝑣-absorbed push procedure. Three of them

(AbWalk, LocalTree, Bipush) are sampling-based approximation al-

gorithms and one of them (Push) is a deterministic algorithm. A

remarkable feature of our algorithms is that they are allowed to

select a landmark node 𝑣 which can be the easy-to-hit node by

random walks on the graph (e.g., the highest-degree node). With

such a nice feature, we can efficiently estimate 𝑟 (𝑠, 𝑡) by sampling

two 𝑣-absorbed random walks from 𝑠 to 𝑣 and from 𝑡 to 𝑣 , instead
of sampling round-trip random walks. Since the landmark node 𝑣
is often easy to hit by random walks, the time overheads of simu-

lating two 𝑣-absorbed random walks 𝑠 ⇝ 𝑣 and 𝑡 ⇝ 𝑣 are much

lower than those of simulating round-trip random walks, thus the

resulting algorithm AbWalk significantly improves the efficiency

of the commute time based algorithm [44]. With a new and deep

connection between resistance distance and spanning 2-forests,

we develop a novel and local spanning tree sampling algorithm

LocalTreewhich again only requires to simulate two random walks

from both 𝑠 and 𝑡 to the landmark node 𝑣 . In addition, we also de-

velop a new deterministic variant of the 𝑣-absorbed random walk,

called 𝑣-absorbed push. Based on the 𝑣-absorbed push procedure,

we propose a new deterministic algorithm Push and a bidirectional

algorithm Bipush which integrates both 𝑣-absorbed push and 𝑣-
absorbed random walk sampling to efficiently compute 𝑟 (𝑠, 𝑡). The
efficiency of these two push-based algorithms can also benefit from

the idea of selecting an easy-to-hit landmark node 𝑣 .
In applications of link prediction [46] and recommendation sys-

tems [20], we typically need to compute the resistance distance

from a given query node 𝑠 to all other nodes. To solve such a single-

source resistance distance query problem, existing algorithms [44]

require to perform 𝑛 − 1 single-pair resistance distance queries,

which is clearly inefficient for large graphs. To tackle this problem,

we propose a new online approximate algorithm based on sampling

of random spanning trees. Our algorithm is based on an interesting

connection between the 𝑣-absorbed random walk and the classic

loop-erased random walk [61] for random spanning tree sampling

(see Section 5.2 for details). We prove that the time complexity

of the proposed algorithm is lower than those of the algorithms

based on processing 𝑛 − 1 single-pair queries. To further improve

the efficiency, we also develop two novel index-based approximate

algorithms. We show that the running time of our index-based algo-

rithms for single-source query is almost the same as the algorithms

for single-pair query (with only an 𝑂 (𝑛) additional term to output

the results). Moreover, our index takes only 𝑂 (𝑛) space, and it can

be constructed by running only one single-source query.

We conduct extensive experiments on 5 real-life graphs to evalu-

ate the proposed algorithms. The results show that (1) for single-pair

query, our best algorithm not only achieves more than two orders of

magnitude speedup over the SOTA algorithms [44] on large graphs,

but also has much lower estimation errors; and (2) for single-source

query, our online algorithm is significantly faster than the baseline

algorithms, while the proposed index-based algorithms are at least

three orders of magnitude faster than our online algorithm. To

summarize, the main contributions of this paper are as follows.

New theoretical results.We first derive a new formula to com-

pute the resistance distances which relies on a selected landmark

node 𝑣 . Then, based on the new formula, we establish several novel

connections among resistance distance, a new concept called 𝑣-
absorbed random walk, spanning 2-forests, and a newly-proposed

𝑣-absorbed push procedure. Such novel and deep connections pro-

vide several interesting combinatorial explanations of resistance

distance, based on which we can develop efficient algorithms to

estimate the resistance distance. We believe that these novel combi-

natorial explanations of resistance distance could be of independent

interest.

Novel algorithms for resistance distance queries. We propose

four novel algorithms to answer the single-pair query, including

a 𝑣-absorbed random walk sampling algorithm AbWalk, a local

spanning tree sampling algorithm LocalTree, a 𝑣-absorbed push al-

gorithm Push and a bidirectional algorithm Bipush that combines

𝑣-absorbed push and 𝑣-absorbed random walk sampling. Tabel 1

summarizes the time complexity of all the proposed algorithms as

well as the state-of-the-art algorithms for single-pair query. Except

Push, all other algorithms are sampling-based approximate algo-

rithms. Push is a deterministic algorithm with an additive error

bound. The time complexity of all our algorithms relies mainly

on the hitting time of the random walk from both 𝑠 and 𝑡 to the

landmark node 𝑣 , which is often lower than the commute time

between 𝑠 and 𝑡 . For single-source query, we develop three new

approximate algorithms, including an online algorithm LEwalk and
two index-based algorithms AbWalk* and Push*. We show that

our index-based algorithms are extremely fast which can answer

single-source queries with time costs similar to the algorithms for

answering single-pair query.

Extensive experiments.We conduct comprehensive experiments

using 10 real-life graphs to evaluate the proposed algorithms. The

results show that our algorithms substantially outperform the SOTA

algorithms in terms both running time and estimation errors. In ad-

dition, we also conduct two case studies to evaluate the effectiveness

of the resistance distance related metrics. The results show that the

corrected resistance distance is indeed a very good node-similarity

metric; and the proposed techniques are very useful for comput-

ing such a resistance distance related metric. For reproducibility

purpose, the source code of this paper is released at an anonymous

link https://github.com/mhLeon/Resistance-Landmark.

2 PRELIMINARIES
2.1 Problem Definition
Given an undirected, connected graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛
nodes and |𝐸 | = 𝑚 edges. We use 𝑒𝑖 to denote the unit vector

where the 𝑖-th element equals 1, and the other elements are 0. We

use 𝐴 to denote the adjacency matrix of 𝐺 ; use 𝐷 to denote the

degree matrix of 𝐺 , where 𝐷𝑖𝑖 = 𝑑𝑖 is the degree of node 𝑖 . Let

𝐿 = 𝐷 −𝐴 be the Laplacian matrix of𝐺 . Denote by 𝐿 =
∑𝑛
𝑖=1

𝜆𝑖 ®𝑢𝑖 ®𝑢𝑇𝑖
the eigen-decomposition of 𝐿, where 0 = 𝜆1 < 𝜆2 ≤ · · · ≤ 𝜆𝑛 are

the eigenvalues of 𝐿 and ®𝑢𝑖 is the eigenvector corresponding to the

eigenvalue 𝜆𝑖 . Let 𝐿(𝑢 |𝑣) be the submatrix of 𝐿 after deleting the

𝑢-th row and 𝑣-th column of 𝐿. When 𝑢 = 𝑣 , it is simplified as 𝐿𝑣 .
Similarly, denote by 𝐿(𝑢1, 𝑣1 |𝑢2, 𝑣2) the submatrix of 𝐿 after deleting
the 𝑢1-th and 𝑣1-th row of 𝐿 and the 𝑢2-th and 𝑣2-th column of 𝐿.

To define the resistance distance, we regard the graph as an

electrical network, where each edge represents a unit resistor and

each node represents a junction that connects resistors. For read-

ers who are unfamiliar with the concepts of electrical networks

https://github.com/mhLeon/Resistance-Landmark

Efficient Resistance Distance Computation: the Power of Landmark-based Approaches SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

Table 1: Time Complexity of the state-of-the-art algorithms as well as the proposed algorithms for computing 𝑟 (𝑠, 𝑡). Here 𝑣 is
an easy-to-hit landmark node (e.g., the highest-degree node), ℎ(𝑠, 𝑡) denotes the hitting time from 𝑠 to 𝑡 , 𝜅 (𝑠, 𝑡) = ℎ(𝑠, 𝑡) + ℎ(𝑡, 𝑠),
and 𝜅𝑣 (𝑠, 𝑡) = ℎ(𝑠, 𝑣) + ℎ(𝑡, 𝑣). Note that 𝜅𝑣 (𝑠, 𝑡) is often much smaller than 𝜅 (𝑠, 𝑡). 𝑇 is the sample size and 𝐾 is decided by the
mixing time of 𝐺 [44]. To achieve a small accuracy, 𝐾 is often very large, and 𝑟max controls the accuracy of Push and Bipush.

Approximate Solutions Deterministic Solution
Algorithm Akp [44] Commute [44] AbWalk LocalTree Bipush Push

Time Complexity 𝑂 (𝑇𝐾2) 𝑂 (𝑇 × 𝜅 (𝑠, 𝑡)) 𝑂 (𝑇 × 𝜅𝑣 (𝑠, 𝑡)) 𝑂 (𝑇 × 𝜅𝑣 (𝑠, 𝑡)) 𝑂 (𝜅𝑣 (𝑠,𝑡)
𝑟max

+𝑇 × 𝜅𝑣 (𝑠, 𝑡)) 𝑂 (𝜅𝑣 (𝑠,𝑡)
𝑟max

)

and resistance distance, we refer them to [8, 18] which provide

a comprehensive introduction to these concepts. Generally, sup-

pose that a unit of current flows in at 𝑠 and out at 𝑡 , we want to
determine the current along all edges and the potential on each

node in 𝐺 . The resistance distance 𝑟 (𝑠, 𝑡) is the potential difference
between 𝑠 and 𝑡 . Let 𝑝 be the potential vector which represents

each node’s potential. Then, by the Kirchhoff’s current law (KCL)

and Kirchhoff’s voltage law (KVL), we can obtain that 𝐿𝑝 = 𝑒𝑠 − 𝑒𝑡
[19]. As a result, the resistance distance 𝑟 (𝑠, 𝑡) = 𝑝𝑠 −𝑝𝑡 can further

be derived by the Moore-Penrose pseudo-inverse of the Laplacian

matrix 𝐿† ≜
∑𝑛
𝑖=2

1

𝜆𝑖
®𝑢𝑖 ®𝑢𝑇𝑖 as follows:

𝑟 (𝑠, 𝑡) = (𝑒𝑠 − 𝑒𝑡)𝑇 𝐿† (𝑒𝑠 − 𝑒𝑡) = (𝐿†)𝑠𝑠 + (𝐿†)𝑡𝑡 − 2(𝐿†)𝑠𝑡 . (1)

By Ohm’s law, the current flow along an arbitrary edge 𝑒 =
(𝑢1, 𝑢2), denoted by 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡), is the potential difference between
𝑢1 and 𝑢2. Note that the current flow along 𝑒 = (𝑢1, 𝑢2) has a
direction which can be either positive or negative. By the result

shown in [11], the current flow can also be derived by 𝐿†:

𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) = (𝑒𝑢1
− 𝑒𝑢2

)𝑇 𝐿† (𝑒𝑠 − 𝑒𝑡)
= (𝐿†)𝑢1𝑠 − (𝐿†)𝑢2𝑠 − (𝐿†)𝑢1𝑡 + (𝐿†)𝑢2𝑡 . (2)

Let P𝑠𝑡 = {𝑠 = 𝑢1, · · · , 𝑢𝑙 = 𝑡} be an 𝑙-length path between 𝑠
and 𝑡 in𝐺 . Then, by Eq. (1) and Eq. (2), we can derive the following

result.

Lemma 2.1. 𝑟 (𝑠, 𝑡) = ∑𝑙−1

𝑘=1
𝐼 (𝑢𝑙 , 𝑢𝑙+1, 𝑠, 𝑡).

Proof. The lemma can be proved by the following equalities.

𝑙−1∑︁
𝑘=1

𝐼 (𝑢𝑘 , 𝑢𝑘+1, 𝑠, 𝑡) =
𝑙−1∑︁
𝑘=1

((𝐿†)𝑠𝑢𝑘 − (𝐿†)𝑠𝑢𝑘+1 − (𝐿†)𝑢𝑘𝑡 + (𝐿†)𝑢𝑘+1𝑡)

= (𝐿†)𝑠𝑠 + (𝐿†)𝑡𝑡 − (𝐿†)𝑠𝑡 − (𝐿†)𝑡𝑠 = 𝑟 (𝑠, 𝑡).
□

Lemma 2.1 shows that the resistance distance 𝑟 (𝑠, 𝑡) is equal to
the sum of all the current flows on the edges of any 𝑠 ∼ 𝑡 path.

Given a graph 𝐺 , a simple random walk on 𝐺 is a stochastic

procedure where in each step a node 𝑢 walks to a neighbor of 𝑢

with a probability
1

𝑑𝑢
. The commute time 𝜅 (𝑠, 𝑡) is defined as the

expected number of steps of a random walk that starts at 𝑠 , visits
𝑡 , and finally comes back to 𝑠 . It is well known that the resistance

distance is closely related to the commute time of the random walk

on the graph [53].

Theorem 2.2. [53] 𝜅 (𝑠, 𝑡) = 2𝑚 × 𝑟 (𝑠, 𝑡).
Clearly, the smaller 𝑟 (𝑠, 𝑡) is, the closer 𝑠 and 𝑡 are. Moreover,

the resistance distance was shown to be a distance metric [12, 53].

Compared to the shortest path distance, resistance distance takes

all paths into consideration, thus it is often more robust. Due to

such nice properties, the resistance distance is widely used in many

real-world applications, including query suggestion [41] and query

expansion [57] in information retrieval, recommendation systems

[20, 27], graph kernels [43, 64], oblivious routing [48], and path

planing in road networks [51]. In those applications, it is often need

to compute the resistance distance of a pair of nodes 𝑠 and 𝑡 , or
compute the resistance distance from a source node 𝑠 to all the

other nodes in 𝐺 . In this paper, we focus on both the single-pair

resistance distance query and the single-source resistance distance

query problems. Formally, we define these two problems as follows.

Definition 2.3. (Single-pair resistance distance query) Given a

graph 𝐺 and a pair of nodes (𝑠, 𝑡) with 𝑠 ≠ 𝑡 , the problem of single-

pair resistance distance query is to compute the resistance distance

𝑟 (𝑠, 𝑡).
Definition 2.4. (Single-source resistance distance query) Given a

graph 𝐺 and a source node 𝑠 , the single-source resistance distance
query problem is to compute 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 .

2.2 Existing solutions and their limitations
According to the above discussions, computing the resistance dis-

tance requires solving a linear Laplacian system 𝐿®𝑥 = ®𝑏, or equiva-
lently computing the pseudo-inverse 𝐿† [21]. Such a linear Lapla-

cian system was well studied in the theoretical computer science

community. Although much progress had been made, the fastest

Laplacian solver still consumes �̃� (𝑚 log𝑛), which is still very costly
for large real-world graphs (e.g., graphs with more than 1 million

nodes).

Recently, several local algorithms for approximating the resis-

tance distance are proposed in [44], which can answer a single-pair

query by only exploring a small portion of the graph. Among all

the methods proposed in [44], there are two most efficient algo-

rithms. The first algorithm Commute is based on estimating the

commute time of the random walk (Theorem 2.2). Specifically, the

algorithm simulates random walks from 𝑠 to 𝑡 and back to 𝑠 , and
then estimates the expected steps of such round-trip random walks.

Since each round-trip random walk consumes 𝑂 (𝜅 (𝑠, 𝑡)) time, the

time complexity of simulating 𝑇 such round-trip random walks

is 𝑂 (𝑇 × 𝜅 (𝑠, 𝑡)) = 𝑂 (2𝑚𝑇 × 𝑟 (𝑠, 𝑡)). This algorithm is fast when

𝑟 (𝑠, 𝑡) is small [44]. However, when 𝑟 (𝑠, 𝑡) is large, such a round-trip
random walk based algorithm is very costly.

The second algorithm proposed in [44] is based on the transition

probability matrix 𝑃 ≜ 𝐷−1𝐴 of the random walk. Peng et al.

[44] show that the resistance distance can be represented by the

transition probability matrix 𝑃 as follows:

𝑟 (𝑠, 𝑡) = (𝑒𝑠−𝑒𝑡)𝑇 𝐿† (𝑒𝑠−𝑒𝑡) = (𝑒𝑠−𝑒𝑡)𝑇 (
∞∑︁
𝑘=0

𝑃𝑘𝐷−1) (𝑒𝑠−𝑒𝑡). (3)

To estimate 𝑟 (𝑠, 𝑡), we can truncate the summation with a sufficient

large integer 𝐾 in Eq. (3). The resistance distance then can be esti-

mated either by sampling simple randomwalks with length no large

than 𝐾 or sampling collision random walks [44]. Such an algorithm

is called Akp. Suppose that we draw𝑇 samples to estimate the tran-

sition probability and take the average. Clearly, for estimating 𝑃𝑖 ,
we need to simulate a random walk with length 𝑖 . In each sample,

the random walk length can be bounded by

∑𝐾
𝑖=1

𝑖 = 𝑂 (𝐾2). Thus,
the time complexity of Akp can be bounded 𝑂 (𝑇𝐾2). However, the
drawback of Akp is that in large real-life graphs, it often requires

a large 𝐾 to achieve a good estimation accuracy. As a result, the

running time of the algorithm can be long.

Furthermore, all the state-of-the-art algorithms can only handle

single-pair resistance distance query, and they are often very hard

to efficiently extended to handle single-source query. In particular,

SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang

to process a single-source query, these algorithms need to compute

𝑂 (𝑛) single-pair queries, which is very costly for large graphs. To

overcome these limitations, we will propose several novel and more

efficient algorithms to handle both single-pair and single-source

resistance distance queries.

3 NEW THEORETICAL RESULTS
In this section, we establish several new connections between re-

sistance distance, random walk and spanning 2-forests. These new

theoretical results lead to two efficient estimators (Lemma 3.5 and

Lemma 3.9) for resistance distance, as well as a deterministic push

algorithm for resistance distance computations.

3.1 New formula for computing resistance
distance

It is well known that for any connected undirected graph, the

Laplacian matrix 𝐿 has a rank 𝑛 − 1, i.e., rank(𝐿) = 𝑛 − 1, and

thereby its inverse does not exist. As a result, to exactly compute the

resistance distance, existing algorithms often relies on computing

the Moore-Penrose pseudo-inverse of 𝐿 which is defined as 𝐿† =∑𝑛
𝑖=2

1

𝜆𝑖
®𝑢𝑖 ®𝑢𝑇𝑖 . It is easy to verify that 𝐿† satisfies four properties [8]:

𝐿𝐿†𝐿 = 𝐿, 𝐿†𝐿𝐿† = 𝐿†, (𝐿𝐿†)𝑇 = 𝐿𝐿†, (𝐿†𝐿)𝑇 = 𝐿†𝐿. Interestingly,
although 𝐿 is not invertible, a submatrix 𝐿𝑣 of 𝐿 is invertible for

any node 𝑣 . The following theorem indicates that we can represent

resistance distance as well as the related quantities in terms of 𝐿−1

𝑣 :

Theorem 3.1. Let ®𝑥1 and ®𝑥2 be two vectors that are orthogonal to
an all-one vector ®1 = [1, · · · , 1]𝑇 , i.e., ®1𝑇 ®𝑥1 = 0, ®1𝑇 ®𝑥2 = 0. Then, for
any node 𝑣 in 𝐺 , we have:

®𝑥𝑇
1
𝐿† ®𝑥2 = ®𝑥𝑇

1

[
𝐿−1

𝑣
®0

®0𝑇 0

]
®𝑥2, (4)

where we assume without loss of generality that 𝑣 is the last node
arranged in 𝐿.

Proof. By definition, we can rephrase 𝐿 as 𝐿 =

[
𝐿𝑣 ®𝑥
®𝑥𝑇 𝑑𝑣

]
. Then,

it is easy to derive that 𝐿

[
𝐿−1

𝑣
®0

®0𝑇 0

]
𝐿 =

[
𝐿𝑣 ®𝑥
®𝑥𝑇 ®𝑥𝑇 𝐿−1

𝑣 ®𝑥

]
. Since

rank(𝐿) = rank(
[
𝐿𝑣 ®𝑥
®𝑥𝑇 𝑑𝑣

]
) = rank(

[
𝐿𝑣 ®𝑥
®0𝑇 𝑑𝑣 − ®𝑥𝑇 𝐿−1

𝑣 ®𝑥

]
) = 𝑛 − 1

and rank(𝐿𝑣) = 𝑛 − 1, we have 𝑑𝑣 − ®𝑥𝑇 𝐿−1

𝑣 ®𝑥 = 0. As a consequence,

we have 𝐿

[
𝐿−1

𝑣
®0

®0𝑇 0

]
𝐿 = 𝐿.

Recall that 𝐿®1 = 0 and rank(𝐿) = 𝑛 − 1, we can conclude that ®1 is

the only vector in the null space of 𝐿. Since ®𝑥1 and ®𝑥2 are orthogonal

to ®1, both ®𝑥1 and ®𝑥2 are in the column space of 𝐿. Therefore, there

exist two vectors ®𝑧1, ®𝑧2 such that 𝐿®𝑧1 = ®𝑥1 and 𝐿®𝑧2 = ®𝑥2. Then, we

have

®𝑥𝑇
1
(𝐿† −

[
𝐿−1

𝑣
®0

®0𝑇 0

]
) ®𝑥2 = ®𝑧𝑇

1
𝐿(𝐿† −

[
𝐿−1

𝑣
®0

®0𝑇 0

]
)𝐿®𝑧2

= ®𝑧𝑇
1
(𝐿𝐿†𝐿 − 𝐿

[
𝐿−1

𝑣
®0

®0𝑇 0

]
𝐿)®𝑧2

= ®𝑧𝑇
1
(𝐿 − 𝐿)®𝑧2

= 0.

This completes the proof. □

Note that Theorem 3.1 holds for any node 𝑣 in𝐺 . For convenience,
we refer to such a node 𝑣 as a landmark node. Based on Theorem 3.1,

we can derive a new formula to compute the resistance distance, as

shown in the following corollary.

Corollary 1. For any two nodes 𝑠, 𝑡 ≠ 𝑣 , we have

𝑟 (𝑠, 𝑡) = (𝐿−1

𝑣)𝑠𝑠 + (𝐿−1

𝑣)𝑡𝑡 − (𝐿−1

𝑣)𝑠𝑡 − (𝐿−1

𝑣)𝑡𝑠 . (5)

For any node 𝑢 ≠ 𝑣 , we have

𝑟 (𝑢, 𝑣) = (𝐿−1

𝑣)𝑢𝑢 = (𝐿−1

𝑢)𝑣𝑣, (6)

Proof. Since the vector 𝑒𝑠 − 𝑒𝑡 is orthogonal to ®1, we can set

®𝑥1 = ®𝑥2 = 𝑒𝑠 − 𝑒𝑡 in Theorem 3.1. Then, we can obtain that 𝑟 (𝑠, 𝑡) =
(𝐿−1

𝑣)𝑠𝑠 + (𝐿−1

𝑣)𝑡𝑡 − (𝐿−1

𝑣)𝑠𝑡 − (𝐿−1

𝑣)𝑡𝑠 . Similarly, by setting ®𝑥1 =

®𝑥2 = 𝑒𝑢 − 𝑒𝑣 in Theorem 3.1, we are able to derive that 𝑟 (𝑢, 𝑣) =
(𝑒𝑢 − 𝑒𝑣)𝑇 𝐿† (𝑒𝑢 − 𝑒𝑣) = (𝐿−1

𝑣)𝑢𝑢 = (𝐿−1

𝑢)𝑣𝑣 . □

Eq. (5) and Eq. (6) apparently give a new approach to compute the

resistance distance. The most appealing feature is that no matter

which 𝑣 we choose, adding or subtracting four elements in the

resulting inverse of the submatrix 𝐿𝑣 maintains an invariant 𝑟 (𝑠, 𝑡).
More interestingly, if we set ®𝑥1 = (𝑒𝑢1

− 𝑒𝑢2
) and ®𝑥2 = 𝑒𝑠 − 𝑒𝑡 in

Theorem 3.1, the current flow on the edge (𝑢1, 𝑢2) also maintains

an invariant 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) for any landmark node 𝑣 . Specifically, we
have the following corollary.

Corollary 2. For any four nodes 𝑠, 𝑡, 𝑢1, 𝑢2 ≠ 𝑣 , we have

𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) = (𝐿−1

𝑣)𝑢1𝑠 − (𝐿−1

𝑣)𝑢2𝑠 − (𝐿−1

𝑣)𝑢1𝑡 + (𝐿−1

𝑣)𝑢2𝑡 . (7)

For any three nodes 𝑢,𝑢1, 𝑢2 ≠ 𝑣 , we have

𝐼 (𝑢1, 𝑢2, 𝑢, 𝑣) = (𝐿−1

𝑣)𝑢𝑢1
− (𝐿−1

𝑣)𝑢𝑢2
. (8)

Proof. The corollary can be easily proved based on the Eq. (2)

and the results in Theorem 3.1. □

The above two corollaries show that both the resistance distance

and the current flow can be calculated by 𝐿−1

𝑣 . However, computing

the inverse of 𝐿𝑣 is often very expensive, thus the algorithm only

works for very small graphs. To overcome this problem, we will

develop several interesting combinatorial explanations for 𝐿−1

𝑣 in

the following section, which result in novel and efficient algorithms

to compute the resistance distance.

3.2 A 𝑣-absorbed random walk interpretation
In this subsection, we give a new combinatorial explanation for

the elements of 𝐿−1

𝑣 based on a concept called 𝑣-absorbed random

walk. Based on such a new explanation, we are able to develop

an efficient algorithm by sampling 𝑣-absorbed random walks to

compute the resistance distance.

Definition 3.2. (𝑣-absorbed random walk) Given a graph 𝐺 and

a node 𝑣 , a 𝑣-absorbed random walk is a random walk that starts

from an arbitrary node 𝑠 and terminates when it hits the node 𝑣 .

Let 𝜏𝑣 [𝑠,𝑢] be the expected number of visits on 𝑢 for a 𝑣-random
walk start from 𝑠 . We define the degree-normalized expected num-

ber of visits on 𝑢 for a 𝑣-random walk as 𝜏 [𝑠,𝑢] = 𝜏𝑣 [𝑠,𝑢]
𝑑𝑢

. Below,

we show that (𝐿−1

𝑣)𝑠𝑢 has an interesting combinatorial explanation

in terms of 𝜏 [𝑠,𝑢].
Let 𝑃 = 𝐷−1𝐴 be the transition probability matrix of the tradi-

tional random walk. Then, we have 𝐿 = 𝐷 (𝐼 − 𝑃). Let 𝑃𝑣 be the
submatrix of 𝑃 which is obtained by deleting the 𝑣-th row and the

𝑣-th column of 𝑃 . Denote by 𝐷𝑣 the diagonal degree matrix except

the node 𝑣 . It is easy to verify that 𝐿𝑣 = 𝐷𝑣 (𝐼 − 𝑃𝑣). The following
lemma establishes a connection between 𝜏𝑣 [𝑠,𝑢] and 𝑃𝑣 .

Lemma 3.3. 𝜏𝑣 [𝑠,𝑢] = (𝐼 − 𝑃𝑣)−1

𝑠𝑢 .

Efficient Resistance Distance Computation: the Power of Landmark-based Approaches SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

Proof. Let 𝑝𝑘𝑣 (𝑠,𝑢) be the probability that a 𝑣-absorbed random
walk starts from 𝑠 and passes𝑢 at the𝑘-th step. Clearly, by definition,
(𝑃𝑣)𝑠𝑢 is the probability that 𝑠 jumps to 𝑢 in a certain random walk

step. Note that in each row corresponding to a node 𝑢 ∈ 𝑁 (𝑣), the
probabilities in such a row of 𝑃𝑣 does not sum up to 1 (less than

1), because there exists a probability to hit the absorbed node 𝑣

for 𝑢 ∈ 𝑁 (𝑣). Then, by definition, we have 𝑝𝑘𝑣 (𝑠,𝑢) = (𝑃𝑘𝑣)𝑠𝑢 . As a
result, 𝜏𝑣 [𝑠,𝑢] =

∑∞
𝑘=0

𝑝𝑘𝑣 (𝑠,𝑢) =
∑∞
𝑘=0
(𝑃𝑘𝑣)𝑠𝑢 = (𝐼 − 𝑃𝑣)−1

𝑠𝑢 . □

Based on Lemma 3.3, we can obtain the following result.

Lemma 3.4. 𝜏 [𝑠,𝑢] = 𝜏𝑣 [𝑠,𝑢]
𝑑𝑢

= (𝐿−1

𝑣)𝑠𝑢 .

Proof. Following the definition of 𝜏 [𝑠,𝑢] and Lemma 3.3, we

have 𝜏 [𝑠,𝑢] = 𝜏𝑣 [𝑠,𝑢]
𝑑𝑢

= ((𝐼 − 𝑃𝑣)−1𝐷−1

𝑣)𝑠𝑢 = (𝐿−1

𝑣)𝑠𝑢 . □

By Corollary 1 and Lemma 3.4, we can derive that

𝑟 (𝑠, 𝑡) = 𝜏𝑣 [𝑠, 𝑠] + 𝜏𝑣 [𝑡, 𝑡] − 𝜏𝑣 [𝑠, 𝑡] − 𝜏𝑣 [𝑡, 𝑠] . (9)

Armed with Eq. (9), we can compute the resistance distance

𝑟 (𝑠, 𝑡) by sampling 𝑣-absorbed random walks. Specifically, we are

able to derive a novel unbiased estimator for 𝑟 (𝑠, 𝑡) by sampling

𝑣-absorbed random walks.

Lemma 3.5. For 𝑣 ≠ 𝑠, 𝑡 , suppose that we simulate a 𝑣-absorbed
random walk from 𝑠 (𝑡 , resp.). Let 𝑋𝑠 (𝑌𝑠 , resp.) be the number of
visits on 𝑠 and 𝑋𝑡 (𝑌𝑡 , resp.) be the number of visits on 𝑡 by such a
𝑣-absorbed random walk. Then, 𝑟 = 𝑋𝑠

𝑑𝑠
− 𝑋𝑡

𝑑𝑡
− 𝑌𝑠
𝑑𝑠
+ 𝑌𝑡
𝑑𝑡

is an unbiased
estimator of 𝑟 (𝑠, 𝑡), i.e., 𝐸 [𝑟] = 𝑟 (𝑠, 𝑡).

Proof. By the linearity of expectation, we have 𝐸 [𝑟] = 𝐸 [𝑋𝑠

𝑑𝑠
−

𝑋𝑡

𝑑𝑡
− 𝑌𝑠
𝑑𝑠
+ 𝑌𝑡
𝑑𝑡
] = 𝐸 [𝑋𝑠

𝑑𝑠
] − 𝐸 [𝑋𝑡

𝑑𝑡
] − 𝐸 [𝑌𝑠

𝑑𝑠
] + 𝐸 [𝑌𝑡

𝑑𝑡
] = (𝐿−1

𝑣)𝑠𝑠 −
(𝐿−1

𝑣)𝑠𝑡 − (𝐿−1

𝑣)𝑡𝑠 + (𝐿−1

𝑣)𝑡𝑡 = 𝑟 (𝑠, 𝑡). □

3.3 A spanning forest interpretation
In this subsection, we first give a spanning forest interpretation

for the resistance distance 𝑟 (𝑠, 𝑡), based on the classic matrix-tree

theorem [8, 13]. Then, we show that such a spanning forest inter-

pretation is not sufficient to derive an efficient estimator for 𝑟 (𝑠, 𝑡).
To achieve this, we establish a novel connection between spanning

tree and current flow on the graph, based on which we are able to

construct efficient estimator for 𝑟 (𝑠, 𝑡).
Given a graph 𝐺 with 𝑛 nodes, a spanning tree is a connected

subgraph of𝐺 which has 𝑛 nodes and 𝑛 − 1 edges. Let T be the set

of spanning trees of 𝐺 . The classic matrix-tree theorem states that

the number of spanning trees in a graph𝐺 , denoted by |T |, is equal
to the determinant of 𝐿𝑣 for any node 𝑣 ∈ 𝐺 [8], i.e., det(𝐿𝑣) = |T |.

A spanning forest is a subgraph of𝐺 that has 𝑛 nodes and it does
not contain any cycle. Clearly, a spanning forest may have several

connected components (each connected component is a tree). If a

spanning forest exactly has two connected components, we refer

to it as a spanning 2-forest. Given two nodes 𝑠, 𝑡 , we use F𝑠 |𝑡 to
denote the set of spanning 2-forests such that 𝑠 is in one connected

component, and 𝑡 is in the other component. Similarly, denote by

F𝑣 |𝑠,𝑡 the set of spanning 2-forests such that 𝑣 is in one connected

component, and both 𝑠 and 𝑡 are in the other component. Then, the

classic all-minors matrix tree theorem [13] states that

det(𝐿(𝑣, 𝑠 |𝑣, 𝑡)) = |F𝑣 |𝑠,𝑡 |, (10)

where det(𝐿(𝑣, 𝑠 |𝑣, 𝑡)) is the determinant of the matrix 𝐿(𝑣, 𝑠 |𝑣, 𝑡)
(obtained by deleting 𝑣-th, 𝑠-th rows and 𝑣-th, 𝑡-th columns of 𝐿).

Note that 𝑠 and 𝑡 in Eq. (10) can be the same, i.e., 𝑠 = 𝑡 = 𝑢. In
this case, the spanning forest set will degrade to F𝑣 |𝑢 . Based on

this, we can obtain a well-known result.

Theorem 3.6. [8] 𝑟 (𝑠, 𝑡) = | F𝑠 |𝑡 || T | .

Proof. By Eq. (6), we have 𝑟 (𝑠, 𝑡) = (𝐿−1

𝑠)𝑡𝑡 =
𝑑𝑒𝑡 (𝐿 (𝑠 |𝑡))
𝑑𝑒𝑡 (𝐿𝑠) =

| F𝑠 |𝑡 |
| T | , where the second equality is due to the Cramer’s rule. □

Theorem 3.6 shows that the resistance distance 𝑟 (𝑠, 𝑡) is propor-
tional to the number of spanning 2-forests with 𝑠 and 𝑡 belonging
to two different components. Further, based on Theorem 3.6, we

can derive an interesting result on resistance distance and spanning

2-forests when a landmark node 𝑣 is considered.

Theorem 3.7. For 𝑠, 𝑡 ≠ 𝑣 , we have 𝑟 (𝑠, 𝑡) = | F𝑣 |𝑠 |+| F𝑣 |𝑡 |−2 | F𝑣 |𝑠,𝑡 |
| T | .

Proof. To prove the lemma, it is sufficient to show |F𝑠 |𝑡 | =
|F𝑣 |𝑠 | + |F𝑣 |𝑡 | − 2|F𝑣 |𝑠,𝑡 |. Note that the set of spanning 2-forests

|F𝑠 |𝑡 | can be divided into two categories: i) 𝑣 and 𝑠 are in the same

component, and ii) 𝑣 and 𝑡 are in the same component. Clearly,

we have |F𝑠 |𝑡 | = |F𝑠,𝑣 |𝑡 | + |F𝑠 |𝑡,𝑣 |. Since |F𝑠,𝑣 |𝑡 | = |F𝑣 |𝑡 | − |F𝑣 |𝑠,𝑡 |
and |F𝑠 |𝑡,𝑣 | = |F𝑣,𝑡 |𝑠 | = |F𝑣 |𝑠 | − |F𝑣 |𝑠,𝑡 |, we have |F𝑠 |𝑡 | = |F𝑣 |𝑠 | +
|F𝑣 |𝑡 | − 2|F𝑣 |𝑠,𝑡 |. This completes the proof. □

Note that both Theorem 3.6 and Theorem 3.7 provide a spanning

forest explanation of resistance distance 𝑟 (𝑠, 𝑡), but both of them

are hard to use to compute 𝑟 (𝑠, 𝑡) in practice. The reason is that

both Theorem 3.6 and Theorem 3.7 require to exactly count the

spanning 2-forests, which is often costly for large graphs. One

possible method is to uniformly sample the spanning 2-forest, and

then construct an unbiased estimator to approximate the count of

the spanning 2-forests. But unfortunately, no efficient algorithm

that can uniformly sample a spanning 2-forest is known, because the

distribution of the spanning 2-forests of a graph is very complicated

[9].

Interestingly, if we only need to compute the resistance distance

for each edge (𝑠, 𝑡) in 𝐺 , then we can efficiently estimate 𝑟 (𝑠, 𝑡)
based on the classic random spanning tree sampling algorithm

[22, 61]. This is because there is a one-to-one mapping between a

spanning 2-forest in F𝑠 |𝑡 and a spanning tree Γ containing an edge

(𝑠, 𝑡). To see this, we can remove the edge (𝑠, 𝑡) ∈ Γ to obtain a

spanning 2-forest in F𝑠 |𝑡 ; for a spanning 2-forest in F𝑠 |𝑡 , we can
add back the edge (𝑠, 𝑡) into the spanning 2-forest which results

in a spanning tree. As a consequence, if there is an edge (𝑠, 𝑡) in
𝐺 , sampling a spanning 2-forest in F𝑠 |𝑡 is equivalent to sampling

a spanning tree Γ that contains the edge (𝑠, 𝑡). By applying Theo-

rem 3.6, we can obtain an unbiased estimator for 𝑟 (𝑠, 𝑡) based on

the random spanning tree sampling (compute the proportion of

sampled spanning tree that contains (𝑠, 𝑡)).
However, if (𝑠, 𝑡) ∉ 𝐸, there does not exist a one-to-one mapping

between a spanning 2-forest in F𝑠 |𝑡 and the spanning tree Γ, thus
existing spanning tree sampling techniques cannot be used to es-

timate 𝑟 (𝑠, 𝑡). Moreover, as we discussed previously, no algorithm

that can sample spanning 2-forests uniformly is known. To circum-

vent this challenging problem, we develop a novel technique based

on an interesting connection of the spanning tree of a graph and

the current flow on an electrical network.

Clearly, for any two nodes 𝑠, 𝑡 , there is a unique simple path

between 𝑠 and 𝑡 in a spanning tree of 𝐺 . Let T 𝑠,𝑡𝑢1,𝑢2
be the set of

spanning trees that contains an edge (𝑢1, 𝑢2) and the path from

𝑠 to 𝑡 in the tree passes along the edge (𝑢1, 𝑢2). Suppose that a

unit of current flows in at 𝑠 and out at 𝑡 . Denote by 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡)
the current flow along the edge 𝑒 = (𝑢1, 𝑢2). Then, we have the
following result.

Lemma 3.8. Given two distinct nodes 𝑠 and 𝑡 , for each edge (𝑢1, 𝑢2) ∈
𝐸, we have 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) =

| T𝑠,𝑡𝑢
1
,𝑢

2
|− | T𝑠,𝑡𝑢

2
,𝑢

1
|

| T | .

SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang

V1

V4

V3V2s

t

V1

V4

V3V2
s

t

1/8

1/8

2/8

3/8

5/8

(a) 𝐺 , an 𝑠-𝑡 -flow

s

t

V1

V4

V3V2 s

t

V1

V4

V3V2 s

t

V1

V4

V3V2 s

t

V1

V4

V3V2

s

t

V1

V4

V3V2 s

t

V1

V4

V3V2
s

t

V1

V4

V3V2 s

t

V1

V4

V3V2

(b) 𝑠-𝑡 -flow on spanning trees

Figure 1: Illustration of sending flows on spanning trees. (a)
A graph𝐺 and an 𝑠-𝑡-flow when a unit current flows in 𝑣2 and
flows out 𝑣4; (b) There are 8 spanning trees. The current flows
along an edge (𝑢, 𝑣) in 𝐺 equals the average current flows on
(𝑢, 𝑣) on each spanning tree.

Proof. Recall that by Eq. (8), we have 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) = (𝐿−1

𝑡)𝑠𝑢1
−

(𝐿−1

𝑡)𝑠𝑢2
. Since (𝐿−1

𝑡)𝑠𝑢1
=

det(𝐿 (𝑡,𝑠 |𝑡,𝑢1))
det(𝐿−1

𝑡)
(by the Cramer’s rule),

we have (𝐿−1

𝑡)𝑠𝑢1
=
| F𝑡 |𝑠,𝑢

1
|

| T | based on the all minors matrix-tree the-

orem (see Eq. (10)). As a result, we have 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) =
| F𝑡 |𝑠,𝑢

1
|− | F𝑡 |𝑠,𝑢

2
|

| T | .

Note that we can partition the spanning forest set F𝑡 |𝑠,𝑢1
into two

subsets based onwhich component𝑢2 belongs to. That is, |F𝑡 |𝑠,𝑢1
| =

|F𝑡,𝑢2 |𝑠,𝑢1
| + |F𝑡 |𝑠,𝑢1,𝑢2

|. Similarly, we have |F𝑡 |𝑠,𝑢2
| = |F𝑡,𝑢1 |𝑠,𝑢2

| +
|F𝑡 |𝑠,𝑢1,𝑢2

|. With these equalities, we can derive that |F𝑡 |𝑠,𝑢1
| −

|F𝑡 |𝑠,𝑢2
| = |F𝑠,𝑢1 |𝑢2,𝑡 | − |F𝑠,𝑢2 |𝑢1,𝑡 |, and thereby 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) =

| F𝑠,𝑢
1
|𝑢

2
,𝑡 |− | F𝑠,𝑢

2
|𝑢

1
,𝑡 |

| T | . Then, we claim that there is a one-to-one

mapping between 𝐹 ∈ F𝑠,𝑢1 |𝑢2,𝑡 and Γ ∈ T 𝑠,𝑡𝑢2,𝑢1
. To see this, re-

move the edge (𝑢1, 𝑢2) in the unique path between 𝑠 and 𝑡 in Γ, it
will obtain a spanning 2-forest such that 𝑠,𝑢1 and 𝑡,𝑢2 belong to

different components. Reversely, if we add an edge (𝑢1, 𝑢2) in 𝐹 ,
we will obtain a spanning tree, where the unique path between

𝑠 and 𝑡 must contain the edge (𝑢1, 𝑢2). Putting it all together, we

have 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) =
| F𝑠,𝑢

1
|𝑢

2
,𝑡 |− | F𝑠,𝑢

2
|𝑢

1
,𝑡 |

| T | =
| T𝑠,𝑡𝑢

1
,𝑢

2
|− | T𝑠,𝑡𝑢

2
,𝑢

1
|

| T | . This

completes the proof. □

Lemma 3.8 suggests that we can estimate the current 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡)
by sampling spanning trees. Specifically, when we sample a span-

ning tree Γ, we can obtain a unique 𝑠 ∼ 𝑡 path from Γ. Then, we
can calculate the proportion of the spanning trees in T 𝑠,𝑡𝑢1,𝑢2

over

all the samples (similar computation for T 𝑠,𝑡𝑢2,𝑢1
) which results in

an unbiased estimator for 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) based on Lemma 3.8. As an

intuitive example shown in Fig. 1, the current flowing along an

edge (𝑢, 𝑣) in a graph 𝐺 can be estimated by randomly sampling

spanning trees, and the 𝑠-𝑡-flow on each spanning tree is an un-

biased estimator of the current flowing from 𝑠 to 𝑡 on 𝐺 . Armed

with this estimator, we are able to estimate the resistance distance

𝑟 (𝑠, 𝑡) for any two distinct nodes 𝑠 and 𝑡 , based on the results in

Lemma 2.1 by summing all estimated current along a fixed 𝑠 ∼ 𝑡
path P𝑠𝑡 . More specifically, we can derive the following unbiased

estimator for 𝑟 (𝑠, 𝑡).

Lemma 3.9. Given two distinct nodes 𝑠 and 𝑡 , we let P𝑠𝑡 be a fixed
path between 𝑠 and 𝑡 . Suppose that a spanning tree𝑇 ∈ T is sampled
uniformly and ˜P𝑠𝑡 is the unique path between 𝑠 and 𝑡 in𝑇 . Let 𝑋+ be
the number of edges that belong to P𝑠𝑡 and appear in ˜P𝑠𝑡 , 𝑋− be the
number of edges that belong to P𝑠𝑡 and appear in ˜P𝑠𝑡 as an opposite
direction, then 𝑟 = 𝑋+ − 𝑋− is an unbiased estimator of 𝑟 (𝑠, 𝑡), i.e.,
𝐸 [𝑟] = 𝑟 (𝑠, 𝑡).

Proof. With the fixed path P𝑠𝑡 = {𝑠 = 𝑢1, 𝑢2, · · · , 𝑢𝑙 = 𝑡}, we
have 𝑟 (𝑠, 𝑡) = ∑𝑙−1

𝑘=1
𝐼 (𝑢𝑘 , 𝑢𝑘+1, 𝑠, 𝑡) by Lemma 2.1. For each edge

(𝑢𝑘 , 𝑢𝑘+1) in P𝑠𝑡 , we denote 𝑋𝑘 as a random variable. If the edge

(𝑢𝑘 , 𝑢𝑘+1) appears in the unique path
˜P𝑠𝑡 in a sampled spanning

tree 𝑇 , then 𝑋𝑘 = 1, which corresponds to a spanning tree in

T 𝑠,𝑡𝑢𝑘 ,𝑢𝑘+1 . If the opposite direction of the edge (𝑢𝑘 , 𝑢𝑘+1) appears in
the unique path

˜P𝑠𝑡 in 𝑇 (or equivalently (𝑢𝑘+1, 𝑢𝑘) appears in the

𝑠 ∼ 𝑡 path ˜P𝑠𝑡), then 𝑋𝑘 = −1, which corresponds to a spanning

tree in T 𝑠,𝑡𝑢𝑘+1,𝑢𝑘 . By the linearity of expectation, we have 𝐸 [𝑟] =
𝐸 [𝑋+ − 𝑋−] =

∑𝑙−1

𝑘=1
𝐸 [𝑋𝑘] =

∑𝑙−1

𝑘=1
𝐼 (𝑢𝑘 , 𝑢𝑘+1, 𝑠, 𝑡) = 𝑟 (𝑠, 𝑡). □

3.4 A deterministic 𝑣-absorbed push procedure
Recall that on a node 𝑢, the personalized PageRank random walk

stays at 𝑢 with probability 𝛼 , and with probability 1 − 𝛼 randomly

jumps to one of its neighbor. Such a randomwalk can be interpreted

as a deterministic push procedure [5, 10, 34, 35]. Specifically, let 𝑟 [𝑢]
be the value of a node 𝑢 (initially 𝑟 [𝑢] = 0 if 𝑢 is not a source node,

and 𝑟 [𝑠] = 1 if 𝑠 is the source). Then, the deterministic push procedure
propagates (1 − 𝛼) × 𝑟 [𝑢]/𝑑𝑢 to each of its neighbor, and reserves

𝛼×𝑟 [𝑢] at𝑢. The push procedure terminates when no nodes’s value

is changed. It was shown that the reserved value on each node is a

good approximation of its PageRank valuewhen the push procedure

terminates. The key property of such a push procedure is that

an invariant 𝑝 (𝑠,𝑤) = 𝑝 (𝑠,𝑤) +∑𝑢∈𝑉 𝑟𝑠 [𝑢]𝑝 (𝑢,𝑤) is maintained

during the push procedure, where 𝑝 (𝑠,𝑤) is the exact personalized
PageRank value of𝑤 with respect to source 𝑠 , 𝑝 (𝑠,𝑤) denotes the
reserved value on 𝑤 . Such an invariant property guarantees the

correctness of the push algorithm.

Motivated by the deterministic push procedure for personal-

ized PageRank, we propose a novel deterministic 𝑣-absorbed push

procedure which can be regarded as a deterministic variant of the 𝑣-
absorbed random walk. Unlike the personalized PageRank random

walk, on each node 𝑢, there is no probability of the walker staying

at 𝑢 for the 𝑣-absorbed random walk (all the probability masses

are uniformly propagated to 𝑢’s neighbors). As a result, no value
is reserved at 𝑢 and the invariant maintained by the personalized

PageRank push procedure cannot be directly generalized to the

𝑣-absorbed random walk.

To achieve our goal, the challenging issues needed to be tackled

are (1) how to define a push operator for the 𝑣-absorbed random

walk, and (2) how to derive an invariant for the newly-defined push
operator? Our approach to overcome these challenges is based on

the following property of the 𝑣-absorbed random walk.

Lemma 3.10. For any nodes 𝑢, 𝑡 ≠ 𝑣 , let 𝜏𝑣 [𝑢, 𝑡] be the expected
number of visits on 𝑡 of a 𝑣-absorbed random walk that starts from
𝑢. Then, we have 𝜏𝑣 [𝑢, 𝑡] = 𝛿{𝑢 = 𝑡} + ∑𝑤∈𝑁 (𝑢),𝑤≠𝑣

1

𝑑𝑢
𝜏𝑣 [𝑤, 𝑡],

where 𝛿{𝑢 = 𝑡} is an indicator variable such that 𝛿{𝑢 = 𝑡} = 1 if
𝑢 = 𝑡 and 0 otherwise.

Proof. By definition, we can derive that 𝜏𝑣 [𝑢, ·] =
∑∞
𝑘=0

𝑒𝑇𝑢 𝑃
𝑘
𝑣 ,

where 𝑒𝑢 is a unit vector in which 𝑢-th element is 1 and the other

elements are 0. Then, we can reformulate the equation as: 𝜏𝑣 [𝑢, ·] =
𝑒𝑇𝑢 +

∑∞
𝑘=1

𝑒𝑇𝑢 𝑃
𝑘
𝑣 = 𝑒𝑇𝑢 +

∑
𝑤∈𝑁 (𝑢),𝑤≠𝑣

1

𝑑𝑢

∑∞
𝑘=0

𝑒𝑇𝑤𝑃
𝑘
𝑣 . Since

∑∞
𝑘=0

𝑒𝑇𝑤𝑃
𝑘
𝑣 =

𝜏𝑣 [𝑤, ·], we have 𝜏𝑣 [𝑢, ·] = 𝑒𝑇𝑢 +
∑
𝑤∈𝑁 (𝑢),𝑤≠𝑣

1

𝑑𝑢
𝜏𝑣 [𝑤, ·]. As a re-

sult, we have 𝜏𝑣 [𝑢, 𝑡] = (𝑒𝑇𝑢 +
∑
𝑤∈𝑁 (𝑢),𝑤≠𝑣

1

𝑑𝑢
𝜏𝑣 [𝑤, ·])𝑡 = 𝛿{𝑢 =

𝑡} +∑𝑤∈𝑁 (𝑢),𝑤≠𝑣
1

𝑑𝑢
𝜏𝑣 [𝑤, 𝑡], which completes the proof. □

Lemma 3.10 indicates that the expected number of visits on a

node 𝑢 by a 𝑣-absorbed random walk can be represented by the

expected number of visits on its neighbors 𝑤 ∈ 𝑁 (𝑢). With this

Efficient Resistance Distance Computation: the Power of Landmark-based Approaches SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

Algorithm 1: The 𝑣-absorbed push procedure

Input: A graph 𝐺 , a source node 𝑠 , a landmark node 𝑣 , a

threshold 𝑟max

Output: 𝜏𝑣 [𝑠,𝑢] and residual 𝑟 [𝑢] for all 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣

1 for each 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣 do
2 𝑟 [𝑢] = 0, 𝜏𝑣 [𝑠,𝑢] = 0;

3 𝑟 [𝑠] = 1;

4 while ∃𝑢 ∈ 𝑉 such that 𝑟 [𝑢] ≥ 𝑑𝑢𝑟max do
5 𝜏𝑣 [𝑠,𝑢] += 𝑟 (𝑢);
6 for each𝑤 ∈ 𝑁 (𝑢),𝑤 ≠ 𝑣 do
7 𝑟 [𝑤] += 𝑟 [𝑢]/𝑑𝑢 ;
8 𝑟 [𝑢] = 0;

9 return 𝜏𝑣 [𝑠,𝑢], 𝑟 [𝑢] for all 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣 ;

r = 1.0
p = 0

V1

V4

V3V2

r = 0
p = 0

r = 0
p = 0

r = 0
p = 1.0

V1

V4

V3V2

r = 0.5
p = 0

r = 0
p = 0

r = 0.167
p = 1.0

V1

V4

V3V2

r = 0
p = 0.5

r = 0.167
p = 0

initial push on V2 push on V1

Figure 2: Illustration of the 𝑣-absorbed push with 𝑟max = 0.2

(𝑣4 is the absorbed node). The Push operations are conducted
on 𝑣2 and 𝑣1. On each node 𝑢, 𝑝 is an estimation of 𝜏𝑣4

[𝑣2, 𝑢]
(𝑢 = 𝑣1, 𝑣2, 𝑣3). The exact value is 0.75, 1.25, 0.25.

property, we devise a novel push operator for the 𝑣-absorbed ran-

dom walk. Similar to the PageRank push procedure, our push pro-

cedure also maintains two vectors 𝑞 and 𝑟 , where 𝑞 [𝑢] denotes the
reserve of 𝑢 and 𝑟 [𝑢] is the residual of 𝑢. The objective of the push
procedure is to compute all 𝑞 [𝑢] as an estimation of 𝜏𝑣 [𝑠,𝑢]. The
residual for each node 𝑢 ≠ 𝑣 and 𝑢 ≠ 𝑠 is initialized as 0, and 𝑟 [𝑠]
is initialized as 1. Then, the push procedure iteratively conducts

push operators on the nodes, until all residuals are below a given

threshold. We will show that during the push procedure, an invari-

ant is maintained and the reserve 𝑞 [𝑢] will approach to 𝜏𝑣 [𝑠,𝑢].
Specifically, we can formally define the 𝑣-absorbed push operator

as follows.

Definition 3.11. (𝑣-absorbed push operator) A 𝑣-absorbed push

operator on a node 𝑢 includes three sequential steps: i) 𝑞 [𝑢] ←
𝑞 [𝑢] +𝑟 [𝑢]; ii) 𝑟 [𝑤] ← 𝑟 [𝑤] + 𝑟 [𝑢]

𝑑𝑢
for each node𝑤 ∈ 𝑁 (𝑢) except

𝑣 ; and iii) 𝑟 [𝑢] ← 0.

By Definition 3.11, the 𝑣-absorbed push operator on a node 𝑢
first adds the residual 𝑟 [𝑢] to itself, and then uniformly propagates

another copy of 𝑟 [𝑢] to its neighbors except the absorbed node 𝑣 .
Clearly, if the absorbed node 𝑣 is a neighbor of 𝑢, then 𝑣 will absorb
the value of 𝑟 [𝑢]/𝑑𝑢 in 𝑣 . Therefore, the total residual of all nodes
in the graph decreases when the push procedure hits a neighbor of

the absorbed node 𝑣 , indicating that the push procedure converges

(because all residuals will be absorbed by 𝑣). As an illustrative

example shown in Fig. 2, when applying a push operation on 𝑣2,

0.5 will be pushed to 𝑣1 and another 0.5 will be absorbed by 𝑣4 (the

middle figure). After that, when applying a push on 𝑣1, 0.5/3 = 0.167

will be pushed to 𝑣2 and 𝑣3 respectively, and the remaining values

0.167 are absorbed by 𝑣4.

The proposed push procedure for estimating 𝜏𝑣 [𝑠,𝑢] with 𝑢 ≠ 𝑣
is given in Algorithm 1. With Lemma 3.10, we can prove that the

following invariant is maintained during the push procedure, which

results in an efficient deterministic algorithm for approximating

the resistance distance 𝑟 (𝑠, 𝑡). (See Section 4.3).

Lemma 3.12. (invariant by the 𝑣-absorbed push) For each node
𝑡 ∈ 𝑉 and 𝑡 ≠ 𝑣 , the reserve 𝑞 [𝑡] and the residues 𝑟 [𝑡] satisfy the
following invariant during the 𝑣-absorbed push procedure:

𝜏𝑣 [𝑠, 𝑡] = 𝑞 [𝑡] +
∑︁
𝑤≠𝑣

𝑟 [𝑤]𝜏𝑣 [𝑤, 𝑡] . (11)

Proof. The invariant can be proved by induction. Initially, the

residue is 𝑟 [𝑠] = 1 and 0 otherwise. As a result, we have 𝜏𝑣 [𝑠, 𝑡] =
0 + 𝜏𝑣 [𝑠, 𝑡], and thus the invariant holds at the initial stage. Assume

that Eq. (11) holds before performing a push operator on 𝑢. Then,
we show that it still holds after performing a push operator on 𝑢.
By definition, for a 𝑣-absorbed push operator on 𝑢, the reserve 𝑞 [𝑢]
increase by 𝑟 [𝑢]. At the same time, the residue of all neighbors of 𝑢

except 𝑣 , i.e., 𝑞 [𝑤] for each𝑤 ∈ 𝑁 (𝑣) and𝑤 ≠ 𝑣 , increases by
𝑟 [𝑢]
𝑑𝑢

,

and the residue 𝑟 [𝑢] decreases to 0. Therefore, after performing a

push operator on𝑢, the right hand side of Eq. (11) is𝑞 [𝑡]+𝑟 [𝑢]𝛿{𝑢 =

𝑡}+∑𝑤≠𝑣 𝑟 [𝑤]𝜏𝑣 [𝑤, 𝑡] +
∑
𝑤∈𝑁 (𝑢),𝑤≠𝑣

𝑟 [𝑤]
𝑑𝑢

𝜏𝑣 [𝑤, 𝑡] −𝑟 [𝑢]𝜏𝑣 [𝑢, 𝑡].
That is to say, the right hand side increases by Δ = 𝑟 [𝑢]𝐼 {𝑢 = 𝑡} −
𝑟 [𝑢]𝜏𝑣 [𝑢, 𝑡] +

∑
𝑤∈𝑁 (𝑢),𝑤≠𝑣

𝑟 [𝑤]
𝑑𝑢

𝜏𝑣 [𝑤, 𝑡]. Note that by Lemma 3.10,

we can easily verify that Δ = 0. As a result, the invariant holds

during the push procedure, which completes the proof. □

Note that for sampling-based algorithms, the solutions are unbi-

ased estimators, thus both over-estimation and under-estimation

are possible. Compared to the sampling-based algorithms, 𝑣-absorbed
push is a deterministic algorithm where only under-estimate is pos-

sible. Based on the established invariant, we can easily derive an

additive error guarantee of Algorithm 1 in term of 𝑟max.

Lemma 3.13. The additive error of the estimation 𝜏𝑣 [𝑠,𝑢] in Algo-
rithm 1 can be bounded by

∑
𝑤≠𝑣 𝜏𝑣 [𝑤,𝑢]𝑑𝑤𝑟max.

Proof. By Eq. (11), 𝜏𝑣 [𝑠,𝑢] = 𝑞 [𝑢] +
∑
𝑤≠𝑣 𝑟 [𝑤]𝜏𝑣 [𝑤,𝑢]. In Al-

gorithm 1, 𝑟 [𝑤] is bounded by 𝑑𝑤𝑟max, so the additive error can be

bounded by

∑
𝑤≠𝑣 𝜏𝑣 [𝑤,𝑢]𝑑𝑤𝑟max. □

Note that the result in Lemma 3.13 is the worst-case bound. How-

ever, in real-world graphs, the proposed 𝑣-absorbed push algorithm

is often very accurate as confirmed in our experiments. Additionally,

it is worth mentioning that once we obtain a deterministic estima-

tion of 𝜏𝑣 [𝑠,𝑢] for all 𝑢 ∈ 𝑉 , we can easily derive a deterministic

estimation for the resistance distance 𝑟 (𝑠, 𝑡) based on Eq. (9).

The time complexity of Algorithm 1 is dependent on the absorbed

node 𝑣 , i.e., the landmark node. In general, if 𝑣 is easier to hit, the

residuals will decrease faster, and the algorithm will also terminate

faster. Let ℎ(𝑠, 𝑣) be the hitting time from 𝑠 to 𝑣 by the 𝑣-absorbed
random walk. Here the hitting time denotes the expected number

of nodes that are visited by the 𝑣-absorbed random walk that starts

from 𝑠 before hitting 𝑡 . Then, we have the following result.

Lemma 3.14. ℎ(𝑠, 𝑣) = ∑
𝑢≠𝑣 𝜏𝑣 [𝑠,𝑢].

Proof. Note that

∑
𝑢≠𝑣 𝜏𝑣 [𝑠,𝑢] is the sum of the expected num-

ber of visits on all nodes except 𝑣 by the 𝑣-absorbed random walk

that starts from 𝑠 before hitting 𝑣 . Since the 𝑣-absorbed random

walk visits only one node at each step, such a summation is exactly

equal to the hitting time ℎ(𝑠, 𝑣) (by definition). □

Based on Lemma 3.14, we analyze the time complexity of Algo-

rithm 1 in Theorem 3.15.

Theorem 3.15. The time complexity of Algorithm 1 is 𝑂 (ℎ (𝑠,𝑣)𝑟max

).

Proof. In Algorithm 1, the estimation 𝜏𝑣 [𝑠,𝑢] is initialized as

0, and it is updated in Line 5. Note that 𝜏𝑣 [𝑠,𝑢] never decreases.
Each time 𝜏𝑣 [𝑠,𝑢] is updated as in Line 5, the total amount of the

vector increases by at least 𝑑𝑢𝑟max. Each update procedure costs

SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang

Algorithm 2: AbWalk

Input: A graph 𝐺 , a source node 𝑠 , a target node 𝑡 (𝑠 ≠ 𝑡), a

landmark 𝑣 , sample size 𝑇

Output: 𝑟 (𝑠, 𝑡)
1 𝑟 (𝑠, 𝑡) ← 0;

2 if 𝑡 = 𝑣 (resp., 𝑠 = 𝑣) then
3 for 𝑖 = 1 : 𝑇 do
4 Simulate a 𝑣-absorbed random walk from 𝑠 (resp., 𝑡);

let 𝜏𝑠 (resp., 𝜏𝑡) be the number of visits on node 𝑠

(resp., 𝑡);

5 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) + 𝜏𝑠
𝑑𝑠𝑇

(resp., 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) + 𝜏𝑡
𝑑𝑡𝑇

);

6 else
7 for 𝑖 = 1 : 𝑇 do
8 Simulate a 𝑣-absorbed random walk from 𝑠; let 𝜏𝑠𝑠

be the number of visits on node 𝑠 , 𝜏𝑠𝑡 be the

number of visits on node 𝑡 ;

9 Simulate a 𝑣-absorbed random walk from 𝑡 ; let 𝜏𝑡𝑡 be

the number of visits on node 𝑡 , 𝜏𝑡𝑠 be the number

of visits on node 𝑠;

10 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) + 𝜏𝑠𝑠
𝑑𝑠𝑇
+ 𝜏𝑡𝑡
𝑑𝑡𝑇
− 𝜏𝑠𝑡
𝑑𝑡𝑇
− 𝜏𝑡𝑠
𝑑𝑠𝑇

;

11 return 𝑟𝑠,𝑡

𝑂 (𝑑𝑢), so an atom update results in at least 𝑟max increment. When

the algorithm terminates, the total amount of the estimation is

upper bounded by

∑
𝑢≠𝑣 𝜏𝑣 [𝑠,𝑢] = ℎ(𝑠, 𝑣). Therefore, there are

at most 𝑂 (ℎ (𝑠,𝑣)𝑟max

) atom operations. The time complexity is then

𝑂 (ℎ (𝑠,𝑣)𝑟max

). □

4 SINGLE-PAIR QUERY COMPUTATION
In this section, we develop several novel algorithms for answering

the single-pair resistance distance query, based on our theoretical re-

sults established in Section 3. We first propose an algorithm AbWalk
based on the 𝑣-absorbed random walk interpretation of resistance

distance in Section 4.1. Then, we develop an algorithm LocalTree
based on the spanning forest explanation. After that, we present a

deterministic algorithm Push based on the 𝑣-absorbed push proce-

dure. Finally, we propose a bidirectional algorithm Bipush which

combines Push and AbWalk to improve the accuracy of the algo-

rithm.

4.1 A 𝑣-absorbed random walk based algorithm
By Lemma 3.5, we are able to estimate the resistance distance by

simulating 𝑣-absorbed randomwalks. We refer to such an algorithm

as AbWalk. The pseudo-code of AbWalk is outlined in Algorithm 2.

First, we choose a node 𝑣 as a landmark node (e.g., the maximum

degree node). Basically, according to Eq. (5) and Eq. (6), there are

two cases needed to consider. If either 𝑠 or 𝑡 equals the landmark

node 𝑣 , we only need to estimate a term (𝐿−1

𝑣)𝑡𝑡 or (𝐿−1

𝑣)𝑠𝑠 . This
is exactly the degree-normalized expected number of visits on a

node 𝑣 for a 𝑣-absorbed random walk. Therefore, we sample𝑇 such

random walks, and take the average degree-normalized visits as the

result (Lines 2-5). If 𝑠, 𝑡 ≠ 𝑣 , 𝑟 (𝑠, 𝑡) can be represented as four terms

of the elements of 𝐿−1

𝑣 which requires two 𝑣-absorbed random

walks independently sampled from 𝑠 and 𝑡 . Again, the combination

of four degree-normalized number of average visits is used as the

estimator (Lines 7-10).

Note that the estimator 𝑟𝑠,𝑡 in Algorithm 2 is an unbiased es-

timator according to Lemma 3.5. Since the random variables 𝜏𝑠𝑡
in Algorithm 2 are unbounded, the sample size 𝑇 is very hard to

determined in theory. However, as we observed in the experiments,

AbWalk performs very well on large real-life datasets using only

10
4
samples.

Let ℎ(𝑠, 𝑣) be the hitting time from 𝑠 to 𝑣 by the 𝑣-absorbed
random walk. The time complexity of Algorithm 2 relies on the

hitting time which can be easily derived by definition.

Theorem 4.1. The time complexity of AbWalk is𝑂 (𝑇 ×ℎ(𝑡, 𝑣)) if
𝑠 = 𝑣 ,𝑂 (𝑇 ×ℎ(𝑠, 𝑣)) if 𝑡 = 𝑣 , and𝑂 (𝑇 × (ℎ(𝑠, 𝑣) +ℎ(𝑡, 𝑣))) if 𝑠, 𝑡 ≠ 𝑣 .

Compared to the state-of-the-art commute-time based algorithm

[44], simulating two 𝑣-absorbed random walks separately from 𝑠
and 𝑡 is intuitively faster than simulating a round-trip random walk

from 𝑠 to 𝑡 , and then back to 𝑠 , especially when 𝑠 and 𝑡 are hard to

hit from each other. This is because we can choose a landmark node

𝑣 as an easy-to-hit node. Generally, such a node exists in real-life

networks, e.g. the largest-degree nodes or the hub nodes. Although

it may be difficult for a traditional random walk that starts from 𝑠
to hit 𝑡 , it is often easy to hit the largest-degree node from either 𝑠
or 𝑡 , as confirmed in our experiments (see Section 6).

4.2 A local spanning tree sampling algorithm
In this subsection, we develop an interesting spanning tree sampling

algorithm for estimating resistance distance 𝑟 (𝑠, 𝑡) based on the

theoretical results presented in Section 3.3. The novelty of our

algorithm, denoted by LocalTree, is twofold. First, LocalTree is the
first spanning tree sampling algorithm that can estimate 𝑟 (𝑠, 𝑡) for
any pair of nodes 𝑠 and 𝑡 , while existing spanning tree sampling

algorithm can only estimate the resistance distance 𝑟 (𝑠, 𝑡) when
(𝑠, 𝑡) is an edge in 𝐺 [22]. Second, existing spanning tree sampling

algorithm is a global algorithm [22], as it needs to traverse the

whole graph to sample spanning trees. Interestingly, we show that

our algorithm is a local algorithm which only visits a small portion

of the graph. In particular, LocalTree only needs to perform the

first two steps of the spanning tree sampling algorithm (the classic

Wilson algorithm [61]) which is sufficient to determine the unique

path between 𝑠 and 𝑡 in the corresponding sampled spanning tree.

Such a local algorithm can significantly reduce the cost for drawing

a sample.

Loop-erased random walk. The loop-erased random walk is a

type of random walk where we obtain the random walk trajectory

by erasing all its loops. The Wilson algorithm [61] is a well-known

algorithm for uniformly sampling spanning trees based on loop-

erased random walks. It starts by fixing an arbitrary node ordering

and initializing the spanning tree Γ with a root node 𝑣 (initially,
Γ = {𝑣}). Then, it runs loop-erased random walks following the

fixed node ordering, until the walk hits Γ. Once the random walk

hits any node in Γ, the loop-erased random walk trajectory is added

into Γ. When all nodes are covered, a spanning tree Γ is sampled

uniformly [61]. Obviously, such an algorithm is a global algorithm

which is often costly to sample a spanning tree on large graphs.

Tomake the sampling procedure locally, the key idea of LocalTree
is that the node ordering in the Wilson algorithm is arbitrary which

means that we can choose 𝑠 and 𝑡 as the first two nodes. As long

as the two nodes are added into the sampled spanning tree, the

unique path between them in the corresponding spanning tree can

be determined. This is because when 𝑠 and 𝑡 are added into Γ, then
there must exist a path 𝑣 ∼ 𝑡 and a path 𝑣 ∼ 𝑠 in Γ, thus a 𝑠 ∼ 𝑡
path can be obtained. This result suggests that we can sample a

spanning tree locally by only running the first two steps of the

Wilson algorithm.

The pseudo-code of LocalTree is shown in Algorithm 3. Accord-

ing to Lemma 3.9, to estimate 𝑟 (𝑠, 𝑡), we first fix a pathP𝑠𝑡 between 𝑠

Efficient Resistance Distance Computation: the Power of Landmark-based Approaches SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

Algorithm 3: LocalTree
Input: A graph 𝐺 , a source node 𝑠 , a target node 𝑡 , a

landmark node 𝑣 , a pre-computed BFS tree Γ𝐵𝐹𝑆 ,
sample size 𝑇

Output: 𝑟 (𝑠, 𝑡)
1 Let P𝑠𝑡 be the directed path from 𝑠 to 𝑡 in Γ𝐵𝐹𝑆 ;

2 for 𝑖 = 1 : 𝑇 do
3 Simulate a random walk from 𝑠 , until it hits 𝑣 , let 𝛾𝑠𝑣 be

the trajectory of the random walk after erasing loops;

4 Simulate a random walk from 𝑡 , until it hits 𝛾𝑠𝑣 , let 𝛾𝑡𝑣
be the trajectory of the random walk after erasing

loops;

5 𝛾𝑠𝑡 = {(𝑖, 𝑗) | (𝑖, 𝑗) ∈ 𝛾𝑠𝑣} ∪ {(𝑗, 𝑖) | (𝑖, 𝑗) ∈ 𝛾𝑡𝑣};
6 Let

˜P𝑠,𝑡 be the directed path from 𝑠 to 𝑡 in 𝛾𝑠𝑡 ;

7 for each edge (𝑖, 𝑗) ∈ P𝑠𝑡 do
8 if (𝑖, 𝑗) ∈ ˜P𝑠,𝑡 then 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) + 1

𝑇
;

9 if (𝑗, 𝑖) ∈ ˜P𝑠,𝑡 then 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) − 1

𝑇
;

10 return 𝑟 (𝑠, 𝑡);

and 𝑡 , and then compare the unique path
˜P𝑠,𝑡 between 𝑠 and 𝑡 in the

sampled spanning tree with P𝑠𝑡 . To this end, we can pre-compute a

BFS (Breadth-First Search) tree with a root node 𝑣 (Line 1). We can

obtain a path from 𝑠 to 𝑡 by traversing the BFS tree. We first sample

a random walk from 𝑠 until it hits 𝑣 , and then we erase all its loops

and record the trajectory (Lines 3). Then, we sample a random walk

from 𝑡 until it hits the trajectory (Line 4). Note that the unique

path
˜P𝑠,𝑡 in the sampled spanning tree can be determined after

these two steps. After that, we update the estimation by traversing

the BFS tree (Lines 6-9). To illustrate implementation details, the

pseudo-code of LocalTree (Implementation Details) is also shown

in Algorithm 4. According to Lemma 2.1 and Lemma 3.9, to estimate

𝑟 (𝑠, 𝑡), we first fix a path P𝑠𝑡 between 𝑠 and 𝑡 , and then compare

the unique path
˜P𝑠,𝑡 between 𝑠 and 𝑡 in the sampled spanning tree

with P𝑠𝑡 . To this end, we can pre-compute a BFS (Breadth-First

Search) tree with a root node 𝑣 . The BFS tree can be recorded by a

vector 𝑏𝑓 𝑠 where 𝑏𝑓 𝑠 [𝑢] represents the parent node of 𝑢 in the BFS

tree. We can obtain a path from 𝑠 to 𝑡 by traversing the BFS tree. We

use 𝐼𝑛𝑇𝑟𝑒𝑒 to record whether a node is added into a spanning tree

or not, 𝑁𝑒𝑥𝑡 to record the next node in the random walk trajectory.

Initially, the landmark node 𝑣 is set as the root node (Line 3). We first

sample a random walk from 𝑠 until it hits 𝑣 (Lines 4-6), and then we

erase all its loops by retracing the trajectory (Lines 7-8). The same

operations are performed to sample a random walk from 𝑡 until it

hits the trajectory (Lines 9-13). Note that the unique path
˜P𝑠,𝑡 in

the sampled spanning tree can be determined after these two steps.

We use a vector 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 to record the edge direction of the path

(Line 13). After that, we update the estimation by traversing the

BFS tree from 𝑠 (Lines 14-19) and 𝑡 (Lines 20-25). The same as the

Wilson algorithm [45], it can be guaranteed that the spanning tree

is sampled uniformly, although we only obtain the path between 𝑠
and 𝑡 . The correctness of Algorithm 3 is guaranteed by Lemma 3.9.

The time complexity of LocalTree is shown in the following theo-

rem.

Theorem 4.2. The time complexity of Algorithm 3 is bounded by
𝑂 (𝑇 (ℎ(𝑠, 𝑣) +ℎ(𝑡, 𝑣))), where ℎ(𝑠, 𝑣) is the hitting time of the random
walk from 𝑠 to hit 𝑣 .

Proof. To draw a sample, Algorithm 3 first takes 𝑂 (ℎ(𝑠, 𝑣)) to
run a loop-erased random walk starting from 𝑠 to hit 𝑣 . Then, the

Algorithm 4: LocalTree (Implementation Details)

Input: A graph 𝐺 , a source node 𝑠 , a target node 𝑡 , a

landmark node 𝑣 , a pre-computed BFS tree 𝑏𝑓 𝑠 ,

sample size 𝑇

Output: 𝑟 (𝑠, 𝑡)
1 for 𝑖 = 1 : 𝑇 do
2 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] ← 𝑓 𝑎𝑙𝑠𝑒 , 𝑁𝑒𝑥𝑡 [𝑢] ← −1, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 [𝑢] ← 1

for all 𝑢 ∈ 𝑉 ;
3 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑣] ← 𝑡𝑟𝑢𝑒;

4 if !𝐼𝑛𝑇𝑟𝑒𝑒 [𝑠] then
5 𝑢 ← 𝑠; while !𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] do
6 𝑁𝑒𝑥𝑡 [𝑢] ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑢),

𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢];
7 𝑢 ← 𝑠; while !𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] do
8 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] ← 𝑡𝑟𝑢𝑒 , 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢];

9 if !𝐼𝑛𝑇𝑟𝑒𝑒 [𝑡] then
10 𝑢 ← 𝑡 ; while !𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] do
11 𝑁𝑒𝑥𝑡 [𝑢] ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑢),

𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢];
12 𝑢 ← 𝑡 ; while !𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] do
13 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] ← 𝑡𝑟𝑢𝑒 , 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 [𝑢] = −1,

𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢];

14 𝑢 ← 𝑠; while 𝑢! = 𝑣 do
15 if 𝑁𝑒𝑥𝑡 [𝑢] == 𝑏𝑓 𝑠 [𝑢] and 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] and

𝐼𝑛𝑇𝑟𝑒𝑒 [𝑁𝑒𝑥𝑡 [𝑢]] then
16 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 [𝑢]

𝑇
;

17 else if 𝑢 == 𝑏𝑓 𝑠 [𝑁𝑒𝑥𝑡 [𝑢]] and 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] and
𝐼𝑛𝑇𝑟𝑒𝑒 [𝑁𝑒𝑥𝑡 [𝑢]] then

18 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) − 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 [𝑢]
𝑇

;

19 𝑢 ← 𝑏𝑓 𝑠 [𝑢];
20 𝑢 ← 𝑡 ; while 𝑢! = 𝑣 do
21 if 𝑁𝑒𝑥𝑡 [𝑢] == 𝑏𝑓 𝑠 [𝑢] and 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] and

𝐼𝑛𝑇𝑟𝑒𝑒 [𝑁𝑒𝑥𝑡 [𝑢]] then
22 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 [𝑢]

𝑇
;

23 else if 𝑢 == 𝑏𝑓 𝑠 [𝑁𝑒𝑥𝑡 [𝑢]] and 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] and
𝐼𝑛𝑇𝑟𝑒𝑒 [𝑁𝑒𝑥𝑡 [𝑢]] then

24 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) − 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 [𝑢]
𝑇

;

25 𝑢 ← 𝑏𝑓 𝑠 [𝑢];

26 return 𝑟 (𝑠, 𝑡);

algorithm performs a loop-erased random walk starting from 𝑣 to
hit the loop-erased random walk trajectory from 𝑠 to 𝑣 , which takes

at most𝑂 (ℎ(𝑡, 𝑣)) time. As a result, the total time to draw𝑇 samples

is bounded by 𝑂 (𝑇 (ℎ(𝑠, 𝑣) + ℎ(𝑡, 𝑣))). □

Note that LocalTree is similar to AbWalk in that both of them

simulate two random walks from 𝑠 and 𝑡 respectively. However, un-
like AbWalk, the random variables used in LocalTree are bounded,
thus we are able to derive a sample size bound for LocalTree. Specif-
ically, since the 𝑠 ∼ 𝑡 path in LocalTree is fixed, the related random

variables can be bounded by the length of path. As we use the BFS

tree to obtain the path, the length of the path between any two

SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang

nodes in the BFS tree is bounded by the diameter of the graph 𝐺 ,
denoted by Δ𝐺 .

We utilize the following Hoeffding’s inequality to show that

LocalTree achieves an absolute error with a probability at least

1 − 𝑝 𝑓 , where 𝑝 𝑓 is a small failure probability.

Lemma 4.3. (Hoeffding’s inequality) Let 𝑋1, · · · , 𝑋𝑇 be indepen-
dent random variables in [𝑎, 𝑏], where −∞ < 𝑎 ≤ 𝑏 < ∞, for any
0 < 𝜖 < 1, we have

𝑃𝑟 [| 1
𝑇

𝑇∑︁
𝑖=1

𝑋𝑖 − 𝐸 [𝑋] | ≥ 𝜖] ≤ 2𝑒𝑥𝑝 (− 2𝜖2𝑇

(𝑏 − 𝑎)2
).

Theorem 4.4. If the sample size 𝑇 ≥
2Δ2

𝐺
𝑙𝑜𝑔 (2

𝑝𝑓
)

𝜖2
, Algorithm 3

outputs 𝑟 (𝑠, 𝑡) that satisfies |𝑟 (𝑠, 𝑡) − 𝑟 (𝑠, 𝑡) | ≤ 𝜖 with a probability
at least 1 − 𝑝 𝑓 .

Proof. Let 𝑟 = 𝑋+ − 𝑋− be the random variable defined in

Lemma 3.9. |𝑟 | is bounded by the length of the path P𝑠,𝑡 , which is

further bounded by Δ𝐺 . Thus, we have −Δ𝐺 ≤ 𝑟 ≤ Δ𝐺 . According
to Lemma 3.9, we have 𝐸 [𝑟] = 𝑟 (𝑠, 𝑡). By applying the Hoeffding’s

inequality, if 𝑇 ≥
4Δ2

𝐺
𝑙𝑜𝑔 (1

𝑝𝑓
)

𝜖2
, we can obtain that 𝑃𝑟 (|

∑𝑇
𝑖=1
𝑟𝑖

𝑇
−

𝑟 (𝑠, 𝑡) | ≥ 𝜖) ≤ 2𝑒𝑥𝑝 (− 2𝜖2𝑇

4Δ2

𝐺

) ≤ 2𝑒𝑥𝑝 (−
2𝜖2

2Δ2

𝐺
𝑙𝑜𝑔 (2

𝑝𝑓
)

𝜖2

4Δ2

𝐺

) ≤ 𝑝 𝑓 , thus
the theorem is established. □

4.3 A 𝑣-absorbed push based algorithm
Based on the 𝑣-absorbed push procedure proposed in Section 3.4,

we can easily develop a deterministic push algorithm to approxi-

mate the single-pair resistance distance 𝑟 (𝑠, 𝑡). Recall that 𝑟 (𝑠, 𝑡) =
𝜏𝑣 [𝑠,𝑠]
𝑑𝑠
+ 𝜏𝑣 [𝑡,𝑡]

𝑑𝑡
− 𝜏𝑣 [𝑠,𝑡]

𝑑𝑡
− 𝜏𝑣 [𝑡,𝑠]

𝑑𝑠
(Eq. (9)). For a fixed absorbed node

𝑣 (i.e., the landmark node), if 𝑠 = 𝑣 , we have 𝜏𝑣 [𝑠, 𝑠] = 𝜏𝑣 [𝑣, 𝑣] = 1,

𝜏𝑣 [𝑠, 𝑡] = 𝜏𝑣 [𝑣, 𝑡] = 0, and 𝜏𝑣 [𝑡, 𝑠] = 𝜏𝑣 [𝑡, 𝑣] = 1; and thus we

have 𝑟 (𝑠, 𝑡) = 𝑟 (𝑣, 𝑡) = 𝜏𝑣 [𝑡,𝑡]
𝑑𝑡

. Similarly, if 𝑡 = 𝑣 , we have 𝑟 (𝑠, 𝑡) =
𝑟 (𝑠, 𝑣) = 𝜏𝑣 [𝑠,𝑠]

𝑑𝑠
. As a consequence, if either 𝑠 or 𝑡 equals 𝑣 , we only

need to invoke the 𝑣-absorbed push procedure (Algorithm 1) once to

estimate 𝑟 (𝑠, 𝑡). However, if both 𝑠 and 𝑡 do not equal to 𝑣 , it is easy
to show that we need to invoke Algorithm 1 twice to estimate 𝑟 (𝑠, 𝑡)
(one from 𝑠 and the other one from 𝑡). The pseudo-code of our push
algorithm is shown in Algorithm 5. We can easily show that the

worst-case time complexity of Algorithm 5 is𝑂 (ℎ (𝑠,𝑣)+ℎ (𝑡,𝑣)𝑟max

). Also,
the additive error bound can be easily derived based on Lemma 3.13

which is at most twice of the error bounds in Lemma 3.13. In our

experiments, we will show that Push is extremely fast and also

achieves a low error in practice.

4.4 A bidirectional approach
Motivated by the bidirectional algorithm for personalized PageRank

computation [34, 60], we show that the resistance distance can also

be estimated in a similar way by integrating both the proposed

Push algorithm and the 𝑣-absorbed random walk algorithm. For

convenience, we refer to such a bidirectional algorithm as Bipush.
The key idea of Bipush is that it first applies Push with a source

node 𝑠 to obtain an estimation of 𝑟 (𝑠, 𝑡) with an additive error

guarantee, and then uses the 𝑣-absorbed random walk algorithm to

estimate the additive error. The pseudo-code of Bipush is shown in

Algorithm 6.

When 𝑡 = 𝑣 , 𝑟 (𝑠, 𝑡) = 𝜏𝑡 [𝑠, 𝑠] = 𝜏𝑡 [𝑠,𝑠]
𝑑𝑠

. For an estimation of

𝜏𝑡 [𝑠, 𝑠], it firstly invokes a 𝑡-absorbed push algorithmwith threshold

𝑟max from 𝑠 (Line 2), and
𝑞 [𝑠]
𝑑𝑠

is the current estimation of 𝑟 (𝑠, 𝑡)

Algorithm 5: Push
Input: A graph 𝐺 , a source node 𝑠 , a target node 𝑡 , a

landmark node 𝑣 , a threshold 𝑟max

Output: 𝑟 (𝑠, 𝑡)
1 if 𝑡 = 𝑣 (resp., 𝑠 = 𝑣) then
2 𝜏𝑣 [𝑡,𝑢], 𝑟𝑡 [𝑢] ← 𝑣-absorbed-push(𝐺, 𝑡, 𝑣, 𝑟max)
3 (resp., 𝜏𝑣 [𝑠,𝑢], 𝑟𝑠 [𝑢] ← 𝑣-absorbed-push(𝐺, 𝑠, 𝑣, 𝑟max));
4 𝑟 (𝑠, 𝑡) ← 𝜏𝑣 [𝑡,𝑡]

𝑑𝑡
(resp., 𝑟 (𝑠, 𝑡) ← 𝜏𝑣 [𝑠,𝑠]

𝑑𝑠
);

5 else
6 𝜏𝑣 [𝑠,𝑢], 𝑟𝑠 [𝑢] ← 𝑣-absorbed-push(𝐺, 𝑠, 𝑣, 𝑟max);
7 𝜏𝑣 [𝑡,𝑢], 𝑟𝑡 [𝑢] ← 𝑣-absorbed-push(𝐺, 𝑡, 𝑣, 𝑟max);
8 𝑟 (𝑠, 𝑡) ← 𝜏𝑣 [𝑠,𝑠]

𝑑𝑠
− 𝜏𝑣 [𝑠,𝑡]

𝑑𝑡
− 𝜏𝑣 [𝑡,𝑠]

𝑑𝑠
+ 𝜏𝑣 [𝑡,𝑡]

𝑑𝑡
;

9 return 𝑟 (𝑠, 𝑡);

(Line 4). After that, the invariant of Eq. (11) is maintained. We

have 𝜏𝑡 [𝑠, 𝑠] = 𝑞 [𝑠] + ∑𝑤≠𝑣 𝑟 [𝑤]𝜏𝑡 [𝑤, 𝑠]. It remains to estimate

the error term

∑
𝑤≠𝑣 𝑟 [𝑤]𝜏𝑡 [𝑤, 𝑠] =

∑
𝑤≠𝑣

𝑑𝑠
𝑑𝑤
𝑟 [𝑤]𝜏𝑡 [𝑠,𝑤]. Here

the equality is due to that (𝐿𝑡)−1
is a symmetric matrix, thus we

have (𝐿−1

𝑣)𝑠𝑤 = 𝜏𝑡 [𝑤, 𝑠] = 𝜏𝑡 [𝑤,𝑠]
𝑑𝑠

=
𝜏𝑡 [𝑠,𝑤]
𝑑𝑤

= 𝜏𝑡 [𝑠,𝑤] = (𝐿−1

𝑣)𝑤𝑠 .
Dividing all terms by 𝑑𝑠 , we have 𝑟 (𝑠, 𝑡) = 𝜏𝑡 [𝑠, 𝑠] =

𝜏𝑡 [𝑠,𝑠]
𝑑𝑠

=

𝑞 [𝑠]
𝑑𝑠
+∑𝑤≠𝑣

𝑟 [𝑤]
𝑑𝑤

𝜏𝑡 [𝑠,𝑤]. Then, we sample 𝑇 𝑡-absorbed random

walks from 𝑠 (Lines 5-9). Note that the number of visits on a node

𝑤 ≠ 𝑡 by a 𝑡-absorbed random walk is an unbiased estimator of

𝜏𝑡 [𝑠,𝑤] for 𝑤 ∈ 𝑉 and 𝑤 ≠ 𝑡 . For each node visited by the walk,

we can update the estimation 𝑟 (𝑠, 𝑡) by adding
𝑟 [𝑢]
𝑑𝑢

in Line 6. This

leads to a more precise unbiased estimator of 𝑟 (𝑠, 𝑡), compared to

the AbWalk algorithm. When 𝑠 = 𝑣 or 𝑠, 𝑡 ≠ 𝑣 , similar approach can

be applied (see Lines 8-18).

It is easy to show that worst-case time complexity of Bipush is

bounded by 𝑂 ((𝑇 + 1/𝑟max) (ℎ(𝑠, 𝑣) + ℎ(𝑡, 𝑣))). In the experiments,

we will show that Bipush is fast and extremely accurate to answer

the single-pair resistance distance query on real-life graphs.

4.5 Heuristic choices of the landmark node 𝑣
Recall that all the proposed algorithms need to select a landmark

node 𝑣 . Intuitively, a node that is easy-to-hit by a random walk

is a good landmark node. This is because the time complexity of

all the proposed algorithms are closely related to the hitting time

ℎ(𝑠, 𝑣) and ℎ(𝑡, 𝑣). To achieve a good performance, we suggest three

heuristic choices of the landmark node. Specifically, we select the

landmark node as (i) the highest-degree node, or (ii) the highest

PageRank node, or (iii) the node with the maximum core number (a

𝑘-core is the maximal subgraph where each node has a degree no

less than 𝑘 ; and the core number of a node 𝑢 is the largest 𝑘 such

that there is a 𝑘-core containing 𝑢). This is because all these three
heuristic strategies select the high-centrality node as the landmark

which is intuitively easy to hit by a random walk. Moreover, all

these strategies can be efficiently implemented. Note that there

may not exist one landmark node that optimizes all queries, but a

careful choice of the landmark node can lead to a very well average

performance. In our experiments, we will study the effect of those

landmark selection strategies.

5 SINGLE-SOURCE QUERY COMPUTATION
In this section, we develop several novel and efficient algorithms

to process the single-source resistance distance query. Note that

all the algorithms proposed in Section 4 can be easily extended

Efficient Resistance Distance Computation: the Power of Landmark-based Approaches SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

Algorithm 6: Bipush
Input: A graph 𝐺 , a source node 𝑠 , a target node 𝑡 , a

landmark node 𝑣 , a threshold 𝑟max, sample size 𝑇

Output: 𝑟 (𝑠, 𝑡)
1 if 𝑡 = 𝑣 (resp., 𝑠 = 𝑣) then
2 𝜏𝑣 [𝑠,𝑢], 𝑟𝑠 [𝑢] ← 𝑡-absorbed-push(𝐺, 𝑠, 𝑣, 𝑟max);
3 (resp., 𝜏𝑣 [𝑡,𝑢], 𝑟𝑡 [𝑢] ← 𝑠-absorbed-push(𝐺, 𝑡, 𝑣, 𝑟max));
4 𝑟 (𝑠, 𝑡) ← 𝜏𝑣 [𝑠,𝑠]

𝑑𝑠
(resp., 𝑟 (𝑠, 𝑡) ← 𝜏𝑣 [𝑡,𝑡]

𝑑𝑡
);

5 for 𝑖 = 1 : 𝑇 do
6 Run a 𝑡-absorbed random walk from 𝑠;

7 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) + 𝑟𝑠 [𝑢]
𝑑𝑢𝑇

for each node 𝑢 that the

random walk visits;

8 (resp., run a 𝑠-absorbed random walk from 𝑡 ;

9 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) + 𝑟𝑡 [𝑢]
𝑑𝑢𝑇

for each node 𝑢 that the

random walk visits;)

10 else
11 𝜏𝑣 [𝑠,𝑢], 𝑟𝑠 [𝑢] ← 𝑣-absorbed-push(𝐺, 𝑠, 𝑣, 𝑟max);
12 𝜏𝑣 [𝑡,𝑢], 𝑟𝑡 [𝑢] ← 𝑣-absorbed-push(𝐺, 𝑡, 𝑣, 𝑟max);
13 𝑟 (𝑠, 𝑡) ← 𝜏𝑣 [𝑠,𝑠]

𝑑𝑠
− 𝜏𝑣 [𝑠,𝑡]

𝑑𝑡
− 𝜏𝑣 [𝑡,𝑠]

𝑑𝑠
+ 𝜏𝑣 [𝑡,𝑡]

𝑑𝑡
;

14 for 𝑖 = 1 : 𝑇 do
15 Run a 𝑣-absorbed random walk from 𝑠;

16 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) + 𝑟𝑠 [𝑢]
𝑑𝑢𝑇
− 𝑟𝑡 [𝑢]

𝑑𝑢𝑇
for each node 𝑢 that

the random walk visits;

17 Run a 𝑣-absorbed random walk from 𝑡 ;

18 𝑟 (𝑠, 𝑡) ← 𝑟 (𝑠, 𝑡) + 𝑟𝑡 [𝑢]
𝑑𝑢𝑇
− 𝑟𝑠 [𝑢]

𝑑𝑢𝑇
for each node 𝑢 that

the random walk visits;

19 return 𝑟 (𝑠, 𝑡);

to handle the single-source query problem by processing 𝑛 − 1

queries 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 . However, the time complexity of such

straightforward baselines is around 𝑂 (𝑛) times of the time costs

taken by processing a single-pair query, which is clearly costly

for large graphs. To tackle this problem, we first propose a new

loop-erased random walk sampling algorithm which is shown to

be more efficient than the baselines. Then, to further improve the

efficiency, we develop two novel index-based algorithms which can

answer a single-source query in almost the same time as answering

a single-pair query. Below, we first briefly analyze the challenges

of the single-source query problem, followed by the loop-erased

random walk algorithm and the index-based algorithms.

5.1 Challenges of single-source query
According to Eq. (5) and Eq. (6), we can see that to compute 𝑟 (𝑠,𝑢)
for all 𝑢 ∈ 𝑉 , it is sufficient to (i) calculate (𝐿−1

𝑣)𝑠𝑢 for all 𝑢 ∈ 𝑉
(because 𝐿−1

𝑣 is a symmetric matrix), and (ii) compute all diagonal

elements of the matrix 𝐿−1

𝑣 (i.e., (𝐿−1

𝑣)𝑢𝑢 for all𝑢 ∈ 𝑉). Note that we
can run a 𝑣-absorbed push procedure (Algorithm 1) with a source

node 𝑠 to compute (𝐿−1

𝑣)𝑠𝑢 for all𝑢 ∈ 𝑉 , which corresponds to a row
of the matrix 𝐿−1

𝑣 . The most challenging part of the single-source

resistance distance query problem is how to efficiently compute

all the diagonal elements of 𝐿−1

𝑣 . To our knowledge, there is no

efficient algorithm that can compute the diagonal elements of 𝐿−1

𝑣 .

A straightforward algorithm is to compute the matrix inverse of

𝐿𝑣 and then get the diagonal elements, which is very costly and

clearly does not work for large graphs.

Remark. It is worth remarking that a single-source personalized

PageRank query only requires computing a row of the personal-

ized PageRank matrix (no need to compute the diagonal elements),

thus the problem can be easily solved by using a push algorithm

with a source node 𝑠 . Therefore, existing techniques for processing

single-source personalized PageRank query cannot be extended to

solve our problem. We also note that a recent work on approximat-

ing the diagonal items of the pseudo-inverse of Laplacian 𝐿† [6]
can be modified to compute the single-source resistance distance

query. However, the method proposed in [6] is mainly tailored for

estimating the diagonal elements of 𝐿† (not 𝐿−1

𝑣). Moreover, the

technique used in [6] requires to match a sampled spanning tree

with a pre-computed tree, which is also expensive for large graphs

(as evidenced in our experiments).

5.2 The loop-erased random walk based
algorithm

In this subsection, we develop a novel algorithm based on the loop-

erased random walk sampling [61] to answer the single-source

query. We show that sampling a spanning tree by the loop-erased

random walk can obtain an unbiased estimator for 𝑟 (𝑠,𝑢) for all
𝑢 ∈ 𝑉 (𝑢 ≠ 𝑣). As a consequence, we can sample 𝑇 spanning trees

to obtain a good approximation for the single-source resistance

distance query problem. We will show that such a new algorithm is

much faster than the approach based on processing𝑂 (𝑛) single-pair
queries.

Our technique is based on an interesting connection between

the 𝑣-absorbed random walk and the loop-erased random walk. As

introduced in Section 4.2, the loop-erased random walk algorithm

(i.e., the Wilson algorithm) first sets a node 𝑣 as root. Then, the
algorithmfixes an arbitrary node ordering𝑢1, · · · , 𝑢𝑛−1, and follows

this order to simulate loop-erased random walk until hitting the

former trajectories. The algorithm terminates when all nodes are

covered. Through a complete execution of the Wilson algorithm,

each node except 𝑣 can be visitedmany times. Surprisingly, we show

that the expected number of visits on each node 𝑢 equals 𝜏𝑣 [𝑢,𝑢],
which is the expected number of visits on𝑢 for a 𝑣-absorbed random
walk starting from 𝑢.

Lemma 5.1. Suppose that we simulate a loop-erased random walk
with a root 𝑣 . Let 𝑋𝑢 be the random variable of the number of visits
on a node 𝑢. Then, we have

𝐸 [𝑋𝑢] = 𝜏𝑣 [𝑢,𝑢] = (𝐼 − 𝑃𝑣)−1

𝑢𝑢 , for all 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣 . (12)

Proof. Note that in the first step, there is only one absorbed

node 𝑣 , thus the loop-erased random walk starting from 𝑢1 visits 𝑢1

with 𝜏𝑣 [𝑢1, 𝑢1] times in expectation. By Lemma 3.3, the expected

number of visits on 𝑢 itself in a 𝑣-absorbed random walk starting

from 𝑢 is (𝐼 − 𝑃𝑣)−1

𝑢𝑢 , thus Eq. (12) holds for the first node 𝑢1 in

the fixed ordering 𝑢1, · · · , 𝑢𝑛−1 in the Wilson algorithm. A key

property of the Wilson algorithm is that the resulting random walk

trajectory distribution is independent of the node ordering [61].

Therefore, every node can be served as the first node, and the

resulting distribution remains the same. As a result, the expected

number of visits on a node𝑢 equals 𝜏𝑣 [𝑢,𝑢] for all𝑢 ∈ 𝑉 with𝑢 ≠ 𝑣 ,
thus the lemma is established. □

According to Eq. (6) and Lemma 3.4, we have 𝑟 (𝑣,𝑢) = 𝜏𝑣 [𝑢,𝑢] =
𝜏𝑣 [𝑢,𝑢]
𝑑𝑢

for all 𝑢 ∈ 𝑉 with 𝑢 ≠ 𝑣 . Thus,
𝑋𝑢

𝑑𝑢
is an unbiased estimator

of 𝑟 (𝑣,𝑢). As a result, we can simulate loop-erased random walks to

estimate all 𝑟 (𝑣,𝑢). The algorithm is outlined in Algorithm 7 which

is a slightly modification of the classic Wilson algorithm. Compared

to the Wilson algorithm, the main difference is that we additionally

SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang

Algorithm 7: LEwalk
Input: A graph 𝐺 , a source node 𝑠 , sample size 𝑇

Output: 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑠

1 𝑟 (𝑠,𝑢) ← 0 for all 𝑢 ∈ 𝑉 ;
2 Fix an arbitrary ordering (𝑣1, · · · , 𝑣𝑛−1) of 𝑉 \ {𝑠};
3 for 𝑖 = 1 : 𝑇 do
4 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] ← 𝑓 𝑎𝑙𝑠𝑒 , 𝑁𝑒𝑥𝑡 [𝑢] ← −1 for 𝑢 ∈ 𝑉 ;
5 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑠] ← 𝑡𝑟𝑢𝑒;

6 for 𝑗 = 1 : 𝑛 − 1 do
7 𝑢 ← 𝑣 𝑗 , 𝑟 (𝑠,𝑢) ← 𝑟 (𝑠,𝑢) + 1

𝑑𝑢𝑇
;

8 while !𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] do
9 𝑁𝑒𝑥𝑡 [𝑢] ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑢);

10 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢], 𝑟 (𝑠,𝑢) ← 𝑟 (𝑠,𝑢) + 1

𝑑𝑢𝑇
;

11 𝑟 (𝑠,𝑢) ← 𝑟 (𝑠,𝑢) − 1

𝑑𝑢𝑇
;

12 𝑢 ← 𝑣𝑖 ;

13 while !𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] do
14 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢] ← 𝑡𝑟𝑢𝑒 , 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢];

15 return 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑠;

record the number of visits on each node and use it to construct an

unbiased estimator (see Lines 7, 10, and 11).

The time complexity of Algorithm 7 is closely related to the root

node 𝑣 (i.e., the landmark node) as shown in the following theorem.

Theorem 5.2. The time complexity of Algorithm 7 is𝑂 (𝑇×𝑇𝑟 ((𝐼−
𝑃𝑣)−1)), where 𝑇𝑟 ((𝐼 − 𝑃𝑣)−1)) denotes the trace of the matrix (𝐼 −
𝑃𝑣)−1) and 𝑇 is the sample size.

Proof. By Lemma 5.1, the expected number of visits on a node

𝑢 by the loop-erased random walk equals 𝜏𝑣 [𝑢,𝑢]. Clearly, the time

complexity of Algorithm 7 is dominated by the total number of

visits of all nodes by the loop-erased random walk. Therefore, the

time complexity for sampling𝑇 samples is𝑂 (𝑇×∑𝑢∈𝑉 (𝐼−𝑃𝑣)−1

𝑢𝑢) =
𝑂 (𝑇 ×𝑇𝑟 ((𝐼 − 𝑃𝑣)−1)). □

Note that the time complexity of Algorithm 7 is lower than that of

the baseline algorithm based on processing𝑂 (𝑛) single-pair queries.
This is because answering a single-pair query (𝑟 (𝑠,𝑢)) takes at least
𝑂 (𝑇×ℎ(𝑠,𝑢)) = 𝑂 (𝑇×∑𝑢≠𝑣 𝜏𝑣 [𝑠,𝑢]) = 𝑂 (𝑇×∑𝑢≠𝑣 [𝐼−𝑃𝑣]−1

𝑠𝑢) time

by the algorithms proposed in Section 4. As a result, for a single-

pair query, such an algorithm takes 𝑂 (𝑇 ×∑𝑠≠𝑣 ∑𝑢≠𝑣 [𝐼 − 𝑃𝑣]−1

𝑠𝑢),
which is clearly much higher than 𝑂 (𝑇 ×𝑇𝑟 ((𝐼 − 𝑃𝑣)−1)).

5.3 The index-based algorithms
Although Algorithm 7 is much faster than the baseline algorithm,

sampling a spanning tree is a global procedure which may take a

long time on large graphs. Hence, a natural question is that can we

have a local algorithm (like the algorithms for single-pair query) to

handle the single-source query? We answer this question affirma-

tively by developing two index-based algorithms.

Index construction.The key observation is that if can pre-computed

the diagonal elements of the matrix 𝐿−1

𝑣 , then the single-source

query problem can be solved efficiently, as we analyzed in Sec-

tion 5.1. By Eq. (6), we can see that the diagonal element (𝐿−1

𝑣)𝑠𝑠 =
𝑟 (𝑣, 𝑠) is exactly the resistance distance between 𝑠 and the land-

mark node 𝑣 . As a result, we can first pre-compute all the resistance

distances from the landmark node 𝑣 to all the other nodes (just

Algorithm 8: AbWalk*

Input: A graph 𝐺 , a source node 𝑠 , a landmark node 𝑣 ,

sample size 𝑇 , a resistance distance index array 𝑅 [𝑢]
for 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣

Output: 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑠

1 𝜏𝑣 [𝑠,𝑢] ← 0 for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑣 ;

2 for 𝑖 = 1 : 𝑇 do
3 Run a 𝑣-absorbed random walk from 𝑠 , for each step the

random walk passes 𝑢, 𝜏𝑣 [𝑠,𝑢] ← 𝜏𝑣 [𝑠,𝑢] + 1

𝑇
;

4 for 𝑖 = 1 : 𝑛 do
5 𝑟 (𝑠,𝑢) ← 𝑅 [𝑠] + 𝑅 [𝑢] − 2

𝜏𝑣 [𝑠,𝑢]
𝑑𝑢

;

6 return 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑠;

Algorithm 9: Push*
Input: A graph 𝐺 , a source node 𝑠 , a landmark node 𝑣 , a

threshold 𝑟𝑚𝑎𝑥 , a resistance distance index array

𝑅 [𝑢] for 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣

Output: 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑠

1 𝜏𝑣 [𝑠,𝑢], 𝑟 [𝑢] ← 𝑣-absorbed-push(𝑠, 𝑣, 𝑟𝑚𝑎𝑥)
2 for 𝑖 = 1 : 𝑛 do
3 𝑟 (𝑠,𝑢) ← 𝑅 [𝑠] + 𝑅 [𝑢] − 2

𝜏𝑣 [𝑠,𝑢]
𝑑𝑢

;

4 return 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑠;

computing one single-source query from the landmark node 𝑣), and
then use these pre-computed distance as an index 𝑅 [𝑢] for 𝑢 ∈ 𝑉
and 𝑢 ≠ 𝑣 . With such a resistance distance index, it is sufficient to

answer any single-source query from a node 𝑠 ≠ 𝑣 by computing a

row of (𝐿−1

𝑣). Note that we can use Algorithm 7 to build the index

array 𝑅 which takes𝑂 (𝑇 ×𝑇𝑟 ((𝐼 − 𝑃𝑣)−1)) time. Clearly, the space

overhead of the index array 𝑅 is 𝑂 (𝑛).
Query processing.We propose two approaches to compute the

𝑠-th row of (𝐿−1

𝑣). The first approach is based on Lemma 3.4. We

can repetitively simulate 𝑣-absorbed random walks from a node 𝑠;

the normalized expected number of visits on a node 𝑢 is (𝐿−1

𝑣)𝑠𝑢 .
The resulting algorithm AbWalk* is shown in Algorithm 8. An

index array 𝑅 is taken as an input, where 𝑅 [𝑢] = 𝑟 (𝑣,𝑢) and is pre-

computed using Algorithm 7. The time complexity of AbWalk* is
almost the same as that of Algorithm 2, with only an𝑂 (𝑛) additional
term to compute and output 𝑂 (𝑛) answers (Lines 4-6).

The second approach is to apply a 𝑣-absorbed push (Algorithm 1)

to estimate the 𝑠-th row of 𝐿−1

𝑣 which results in our Push* algorithm.

The pseudo-code of Push* is shown in Algorithm 9. Again, the time

complexity of Push* is almost the same as that of Algorithm 1,

with only an 𝑂 (𝑛) additional term to compute and output 𝑂 (𝑛)
answers (Lines 2-4). Note that similar to AbWalk and Push, the
time complexity of AbWalk* and Push* is closely related to the

landmark node 𝑣 . Likewise, a good landmark should be an easy-to-

hit node. Thus, the same landmark selection strategies proposed in

Section 4.5 can also be applied for our index-based algorithms.

6 EXPERIMENTS
6.1 Experimental setup
Datasets and query sets.We use 5 real-life datasets, including 2

small graphs and 3 large graphs. All datasets can be downloaded

Efficient Resistance Distance Computation: the Power of Landmark-based Approaches SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

Table 2: Datasets

Type Dataset 𝑛 𝑚 ¯𝑑 ¯ℎ Δ𝐺

Facebook 4,039 88,233 43.69 767 8

Small Hep-th 8,638 24,806 5.74 1189 18

graphs CAIDA 26,475 53,381 4.03 85 17

Astro-ph 17,903 196,972 22 835 14

Email-enron 33,696 180,811 10.73 4783 13

Amazon 334,863 925,872 5.53 14230 47

Large DBLP 317,080 1,049,866 6.62 7564 23

graphs Youtube 1,134,890 2,987,624 5.27 269 24

Pokec 1,632,803 22,301,964 27.32 3169 14

Orkut 3,072,441 117,184,899 76.28 7336 10

from [29]. Note that for a non-connected graph, since the resis-

tance distance between nodes in different connected components

are infinite, we can process each connected component separately.

As a result, we precompute the largest connected component of all

datasets, the detailed statistics of the largest connected components

are summarized in Table 2. Specifically,
¯𝑑 = 2𝑚

𝑛 denotes the average

degree, Δ𝐺 is the diameter of the graph,
¯ℎ is the average hitting

time from all nodes to the landmark node (the highest degree node).

Suppose that 𝑣 is the highest-degree node, ¯ℎ =
∑
𝑠∈𝑉

1

𝑛ℎ(𝑠, 𝑣). We

estimate
¯ℎ by randomly generating 10

6
nodes uniformly and simu-

lating 𝑣-absorbed random walks from these nodes. The smaller
¯ℎ is,

the smaller ℎ(𝑠, 𝑣) + ℎ(𝑡, 𝑣) will be for any two nodes 𝑠 and 𝑡 . For
small graphs, we are able to compute the exact resistance distance

between any pair of nodes via computing the 𝐿−1

𝑣 matrix. The ex-

act resistance distance is used as the ground truth to evaluate the

estimation errors of different approximation algorithms. For large

graphs, it is very difficult to obtain the exact resistance distances

by existing approaches. Thus, for single-pair query, we use Bipush
with a large sample size𝑇 (𝑇 = 10

6
) and a small 𝑟max (𝑟𝑚𝑎𝑥 = 10

−6
)

to compute a high-precision resistance distance estimation, and use

such a high-precision estimation as the ground truth. Similarly, for

single-source query, we first use a relatively-large sample size 𝑇

(𝑇 = 10
5
) to build the index, and then invoke Push* with a small

𝑟max (𝑟max = 10
−7
) to derive high-precision single-source query

estimations as the ground-truth results.

For single-pair queries, we uniformly sample 1000 node pairs

and use them as the query set. The error of different algorithms

is measured by |𝑟 (𝑠,𝑢) − 𝑟 (𝑠,𝑢) |, where 𝑟 (𝑠,𝑢) and 𝑟 (𝑠,𝑢) are the
estimated resistance distance and the ground truth respectively.

For single-source queries, we uniformly sample 50 source nodes

and use them as the query set. We use the 𝐿1-error to evaluate the

error of various single-source query processing algorithms, which

is defined as

∑
𝑢∈𝑉 |𝑟 (𝑠,𝑢) − 𝑟 (𝑠,𝑢) |.

Different algorithms. For single-pair query, we compare our algo-

rithms with two state-of-the-art algorithms Commute and Akp pro-
posed in [44]. Commute is based on estimating the commute time

of the random walk, while Akp is based on estimating the truncated

transition probability. We do not include other previous algorithms

because all of them are outperformed by Commute and Akp [44].

For Commute and Akp, we use their original implementations in

[44]. For our solutions, we implement four different algorithms

which are AbWalk (Algorithm 2), LocalTree (Algorithm 3), Push
(Algorithm 5) and Bipush (Algorithm 6).

For single-source query, we compare our algorithms with two

baselines: Base and Ust. Here Base is a baseline algorithm that

invokes AbWalk 𝑛 − 1 times to compute 𝑛 − 1 single-pair queries.

Ust is the algorithm proposed in [6] for computing the diagonal

elements of 𝐿†. As we discussed in Section 5.1, such an algorithm

can be modified to compute the single-source resistance distance

query. For our solutions, we implement three different algorithms:

an online algorithm LEwalk (Algorithm 7), and two index-based

algorithm AbWalk* (Algorithm 8) and Push* (Algorithm 9).

Parameters. For Commute, there is a parameter 𝜖 , we set it as 0.1
following [44]. For Akp, there are two parameters the truncated

parameter 𝐾 and the sample size 𝑇 ; we set 𝐾 = 100 and 𝑇 = 10
4
.

The other methods can be categorized into two different types:

i) sampling-based methods (including AbWalk, LocalTree, LEwalk,
AbWalk*, Base, Ust); ii) push-based methods (including Push and

Push*). For sampling-based methods, we set the sample size 𝑇 to

10
4
. For push-based methods, there is a parameter 𝑟𝑚𝑎𝑥 , we set it to

10
−4
. Bipush has both parameters 𝑇 and 𝑟𝑚𝑎𝑥 , we set 𝑇 = 10

4
and

𝑟𝑚𝑎𝑥 = 10
−4

respectively. Wewill evaluate the proposed algorithms

by varying parameters in Section 6.4. All our algorithms requires

to select a landmark node. We choose the highest-degree node as

the landmark node by default. We will also study the effect of other

landmark choices proposed in Section 6.5.

Experimental environment. All the experiments are conducted

on a Linux 20.04 server with Intel 2.0 GHz CPU and 128GB mem-

ory. All the proposed algorithms are implemented in C++. For the

baselines Akp and Commute, we use the open-source C++ imple-

mentations provided by their original authors [44]. All algorithms

used in our experiments are complied using GCC9.3.0 with -O3

optimization.

6.2 Results of single-pair query
In this experiment, we compare the query time and estimation

error of different algorithms for answering single-pair query. We

use box-plot to illustrate the query time and error, so that we can

clearly observe the distributions of the performance of different

algorithms. Fig. 3 shows the running time of various algorithms. As

can be seen, all the proposed algorithms AbWalk, LocalTree, Push
and Bipush achieve significantly less query time than Commute on
most datasets, which confirms our analysis in Section 2.2. We can

also observe that the overall query time of AbWalk, LocalTree and
Bipush are comparable with that of Akp. Among all competitors,

the proposed Push algorithm is extremely fast on all datasets. The

average query time of Push is at least two orders of magnitude

lower than the state-of-the-art (SOTA) algorithms on large graphs.

For example, on Pokec, the average query time of Push is 0.02

seconds, while the state-of-the-art Akp algorithm consumes around

17.5 seconds. These results demonstrate the high efficiency of the

proposed algorithms.

Fig. 4 shows the estimation error of various algorithms. From

Fig. 4, we can see that all the proposed algorithmsAbWalk, LocalTree,
Push and Bipush are much more accurate than two SOTA algo-

rithms Commute and Akp. Compared to the other algorithms, Akp
is much less accurate, which confirms our analysis in Section 2.2.

The smaller
¯ℎ is, the faster AbWalk and LocalTreewill be. LocalTree

performs worse than AbWalk on Youtube which has a relatively

large diameter. We also observe that our Bipush algorithm is ex-

tremely accurate whose average estimation error can be up to four

orders of magnitude lower than that of Commute. For example, on

CAIDA, the average estimation error of Bipush is round 4 × 10
−6
,

while the average error of the SOTA algorithm Commute is round
4 × 10

−2
. These results indicate that the proposed algorithms can

achieve a very high precision in answering single-pair resistance

distance query.

In summary, for real-life datasets with a relatively small
¯ℎ, our

AbWalk and LocalTree algorithms are better than the state-of-the-

art algorithms. LocalTree is more suitable for graphs with small

diameters. Bipush has the best overall performance on all datasets,

as it can achieve a very high accuracy and consumes comparable

time as the other competitors. As a result, we recommend to apply

SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang

Bipush to approximate single-pair resistance distance computa-

tions.

6.3 Results of single-source query
In this experiment, we study the query time and estimation error

of different algorithms for answering single-source queries. We

use box-plot to show the performance of various algorithms. We

also use a triangle to denote the index-building time as well as the

estimation error using LEwalk. We compare three online methods,

Base, Ust and LEwalk, and two index-based methods, AbWalk* and
Push*. The results of query time of various algorithms is shown in

Fig. 5. As can be seen, both LEwalk and Ust are much faster than

Base which is consistent with our analysis in Section 5. On large

datasets, Base cannot terminate within 10 hours. In general, LEwalk
is faster than Ust because it avoids the operations of matching two

trees as we discussed in Section 5.1. For the index-based methods,

the index-building time is generally lower than an online single-

source query time, because the time overhead𝑂 (𝑇𝑟 ((𝐼 − 𝑃𝑣)−1)) is
often lower for the landmark node 𝑣 , compared to the other query

nodes. Both AbWalk* and Push* can answer a single-source query

in very short time even on the largest graph; and they are 3 ∼ 4

orders of magnitude faster than the online algorithms. Especially,

Push* is extremely fast, and it can answer single-source queries

within around 1 second on all large graphs. These results demon-

strate the high-efficiency of the proposed algorithms. Fig. 6 depicts

the estimation errors of different algorithms. We can see that the

estimation errors of the index-based methods are comparable to

online algorithms. Also, we can see that LEwalk achieves slightly
lower errors than Ust. These results demonstrate that our solutions

are very efficient and effective to handle single-source queries. For

the index size, it only requires an𝑂 (𝑛) array to store the resistance

distance values, thus it is much smaller than the graph size. We

omit the results for evaluating the index size due to the space limit.

In summary, for online algorithms, we recommend to use LEwalk
to approximately compute the single-source resistance distance;

for index-based algorithms, we recommend to apply LEwalk to

construct an index for the landmark node, and use Push* to answer
the single-source resistance distance query.

6.4 The effect of different parameters
First, we evaluate the performance of the proposed algorithms

for answering single-pair queries when varying 𝑇 and 𝑟max. For

AbWalk, LocalTree and Bipush, we vary the parameter 𝑇 (i.e., the

sample size) from 10
2
to 10

6
; and for Push and Bipush, we vary

the parameter 𝑟max from 10
−3

to 10
−7
. The results on Facebook

are shown in Fig. 7; and similar results can also be observed on

the other datasets. As expected, with 𝑇 increasing, the query time

of AbWalk, LocalTree and Bipush increases, and their estimation

errors decrease. Similarly, with 𝑟max decreasing, the query time of

Push and Bipush increases and the errors getting smaller. Again, we

find that Bipush is much more accurate than the other algorithms;

and its estimation error can even be less than 10
−9

when 𝑟max =

10
−5

. These results further confirm the efficiency and effectiveness

of our algorithms.

Second, for the single-source query, we vary the parameter 𝑇 in

Ust, LEwalk and AbWalk*, and vary the parameter 𝑟𝑚𝑎𝑥 in Push*.
Also, the index-building algorithm has a parameter 𝑇 , we refer to
it as LEwalk-v. The results on Facebook are shown in Fig. 8. For

the other datasets, the results are consistent. As can be seen from

Fig. 8, the query time becomes larger and the 𝐿1-error becomes

smaller as 𝑇 getting larger for Ust, LEwalk and AbWalk*. Likewise,
as 𝑟𝑚𝑎𝑥 decreases, the query time of Push* increases and the error

decreases. Again, from Fig. 8(a), we can observe that LEwalk is

slightly faster than Ust; both LEwalk and Ust are much slower than

the index-basedmethodAbWalk*. From Fig. 8(c), our index-building

algorithm has a lower error than the single-source query processing

algorithms. The reason may be that for the selected landmark node

is often easier to hit than the other source nodes, thus the loop-

erased random walk trajectories generated by LEwalk is often not

too long, which reduces the variance of the estimator. These results

further conform that our index-based solutions are very accurate.

6.5 The impact of the landmark node
In this experiment, we evaluate the impact of the landmark node 𝑣
on all proposed algorithms. Three heuristic landmark selection

strategies including Degree, Core and PageRank are evaluated.

Here Degree chooses the node with the largest degree, Core picks
the node with the largest core number [39], and PageRank selects

the node with the highest PageRank value. The results on Facebook
are shown in Fig. 9. Similar results can also be observed on the

other datasets.

As shown in Figs. 9(a-b), the query time of all the algorithms is

the lowest when using the highest-degree node as the landmark

for both single-pair and single-source queries, followed by Core
and PageRank. The reason may be that the highest-degree node is

intuitively the most easy-to-hit node compared to the other nodes.

For the estimation errors (Figs. 9(c-d)),Degree andCore can achieve
comparable performance, and both of them are generally better

than PageRank. These results suggest that the highest-degree node
is a very good landmark node in practice which is also used in our

previous experiments.

6.6 The impact of the node ordering
Recall that the 𝑣-absorbed push procedure (Algorithm 1) iteratively

updates nodes with residual larger than a threshold. The perfor-

mance of the algorithmmay depend on the node-update ordering. In

this experiment, we study the impact of different orderings. Specif-

ically, we compare two ordering techniques: i) first-in-first-out

(FIFO) ordering, and ii) priority ordering. For the priority ordering,

we use the residual as the priority for each node, and the algorithm

always processes the node with the largest residual. We apply Al-

gorithm 1 to estimate 𝜏𝑣 [𝑠,𝑢] for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑣 w.r.t. a query
node 𝑠 . For the query set, we generate 50 nodes uniformly and

report the average result. We vary the parameter 𝑟𝑚𝑎𝑥 from 10
−3

to 10
−7
. Fig. 10 shows the results on Youtube, and the results on

the other datasets are consistent. As can be seen, the query time of

Algorithm 1 with priority ordering is significantly higher than that

of Algorithm 1 with FIFO ordering. However, the 𝐿1-errors of Algo-

rithm 1 with these two orderings are almost the same. This result

indicates that it is sufficient to use a FIFO ordering in our 𝑣-absorbed
push algorithm, which is also used in our previous experiments.

6.7 Case Studies
In this experiment, we conduct two case studies to study the effec-

tiveness of the resistance distance related metrics. Recall that the

resistance distance 𝑟 (𝑠, 𝑡) measures the similarity between 𝑡 and 𝑠 ;
the smaller 𝑟 (𝑠, 𝑡) is, themore similar 𝑠 and 𝑡 are. However, as shown

in [54], 𝑟 (𝑠, 𝑡) ≈ 2𝑚(1

𝑑𝑠
+ 1

𝑑𝑡
) on geometric graphs. That is, the resis-

tance distance between two nodes are mainly determined by their

degrees. To fix this issue, the authors in [54] proposed a corrected re-

sistance distance defined as 𝑟 (𝑠, 𝑡) =
√︃
𝑟 (𝑠, 𝑡) − 1

𝑑𝑠
− 1

𝑑𝑡
−(1

𝑑𝑠
− 1

𝑑𝑡
)2.

Note that the key to compute such a corrected resistance distance

is to calculate the resistance distance, thus our techniques can be

directly used.

We compare the resistance distance (denoted by Res) and the cor-
rected resistance (denoted by Corrected-Res) with two widely-used

similarity measures PageRank [60] and SimRank [23]. In addition,

we also include a degree-based metric (denoted by Degree) for com-

parison which is defined by
1

𝑑𝑠
+ 1

𝑑𝑡
. We use two real-life datasets

Efficient Resistance Distance Computation: the Power of Landmark-based Approaches SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

10
-2

10
-1

10
0

10
1

commute

akp
abwalk

localtree

push
bipush

ti
m

e
 (

s
)

(a) Facebook

10
-2

10
-1

10
0

10
1

commute

akp
abwalk

localtree

push
bipush

ti
m

e
 (

s
)

(b) Hep-th

10
-3

10
-2

10
-1

10
0

10
1

commute

akp
abwalk

localtree

push
bipush

ti
m

e
 (

s
)

(c) CAIDA

10
-1

10
0

10
1

10
2

commute

akp
abwalk

localtree

push
bipush

ti
m

e
 (

s
)

(d) Astro-ph

10
-2

10
-1

10
0

10
1

commute

akp
abwalk

localtree

push
bipush

ti
m

e
 (

s
)

(e) Email-enron

10
-2

10
-1

10
0

10
1

10
2

commute

akp
abwalk

localtree

push
bipush

ti
m

e
 (

s
)

(f) Amazon

10
-2

10
-1

10
0

10
1

10
2

commute

akp
abwalk

localtree

push
bipush

ti
m

e
 (

s
)

(g) DBLP

10
-2

10
-1

10
0

10
1

10
2

10
3

commute

akp
abwalk

localtree

push
bipush

ti
m

e
 (

s
)

(h) Youtube

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

commute

akp
abwalk

localtree

push
bipush

ti
m

e
 (

s
)

(i) Pokec

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

commute

akp
abwalk

localtree

push
bipush

ti
m

e
 (

s
)

(j) Orkut

Figure 3: Runtime of different algorithms for answering single-pair queries

10
-8

10
-6

10
-4

10
-2

10
0

commute

akp
abwalk

localtree

push
bipush

e
r
r
o

r

(a) Facebook

10
-8

10
-6

10
-4

10
-2

10
0

commute

akp
abwalk

localtree

push
bipush

e
r
r
o

r

(b) Hep-th

10
-8

10
-6

10
-4

10
-2

10
0

commute

akp
abwalk

localtree

push
bipush

e
r
r
o

r

(c) CAIDA

10
-8

10
-6

10
-4

10
-2

10
0

commute

akp
abwalk

localtree

push
bipush

e
r
r
o

r

(d) Astro-ph

10
-8

10
-6

10
-4

10
-2

10
0

commute

akp
abwalk

localtree

push
bipush

e
r
r
o

r

(e) Email-enron

10
-6

10
-4

10
-2

10
0

commute

akp
abwalk

localtree

push
bipush

e
r
r
o

r

(f) Amazon

10
-6

10
-4

10
-2

10
0

commute

akp
abwalk

localtree

push
bipush

e
r
r
o

r

(g) DBLP

10
-8

10
-6

10
-4

10
-2

10
0

commute

akp
abwalk

localtree

push
bipush

e
r
r
o

r

(h) Youtube

10
-8

10
-6

10
-4

10
-2

10
0

commute

akp
abwalk

localtree

push
bipush

e
r
r
o

r

(i) Pokec

10
-8

10
-6

10
-4

10
-2

10
0

commute

akp
abwalk

localtree

push
bipush

e
r
r
o

r

(j) Orkut

Figure 4: Estimation errors of different algorithms for answering single-pair queries

10
-2

10
-1

10
0

10
1

10
2

10
3

base
ust

lewalk
push*

abwalk*

ti
m

e
 (

s
)

(a) Facebook

10
-1

10
0

10
1

10
2

10
3

10
4

base
ust

lewalk
push*

abwalk*

ti
m

e
 (

s
)

(b) Hep-th

10
-2

10
-1

10
0

10
1

10
2

10
3

base
ust

lewalk
push*

abwalk*

ti
m

e
 (

s
)

(c) CAIDA

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

base
ust

lewalk
push*

abwalk*

ti
m

e
 (

s
)

(d) Astro-ph

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

base
ust

lewalk
push*

abwalk*

ti
m

e
 (

s
)

(e) Email-enron

10
-1

10
0

10
1

10
2

10
3

base
ust

lewalk
push*

abwalk*

ti
m

e
 (

s
)

(f) Amazon

10
-1

10
0

10
1

10
2

10
3

base
ust

lewalk
push*

abwalk*

ti
m

e
 (

s
)

(g) DBLP

10
-1

10
0

10
1

10
2

10
3

10
4

base
ust

lewalk
push*

abwalk*

ti
m

e
 (

s
)

(h) Youtube

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

base
ust

lewalk
push*

abwalk*

ti
m

e
 (

s
)

(i) Pokec

10
-1

10
0

10
1

10
2

10
3

10
4

base
ust

lewalk
push*

abwalk*

ti
m

e
 (

s
)

(j) Orkut

Figure 5: Runtime of different algorithms for single-source query (the triangle in each figure denotes the index building time)

DBLP andWordNet for our case studies. Specifically, DBLP [1] is a

co-authorship network collected from recent 10-year publications

(2006-2016) in the database area. The DBLP dataset contains 37,177

nodes and 131,715 edges. WordNet [2] is an English word graph

parsed from the text of English Wikipedia, where each node is

a word and each edge is a dependency between words. WordNet
contains 5,040 nodes and 55,258 edges.We aims to find the most sim-

ilar nodes w.r.t. a source node 𝑠 on these datasets. Specifically, we

compute the top-10 nodes with the lowest Res (Corrected-Res and
Degree) values as well as the highest PageRank (SimRank) values.
The results are shown in Tabel 3. As expected, for PageRank and
SimRank the top-10 similar users of "Leman Akoglu" are all authors

that have a close relationship with "Leman Akoglu" (who has co-

authored more than one paper with him). Most of the top-10 results

of Res, however, are well-known researchers in the database area,

indicating that the resistance distance metric tends to be a global

SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang

10
0

10
1

10
2

10
3

base
ust

lewalk
push*

abwalk*

L
1

-
e
r
r
o

r

(a) Facebook

10
0

10
1

10
2

10
3

base
ust

lewalk
push*

abwalk*

L
1

-
e
r
r
o

r

(b) Hep-th

10
0

10
1

10
2

10
3

base
ust

lewalk
push*

abwalk*

L
1

-
e
r
r
o

r

(c) CAIDA

10
0

10
1

10
2

10
3

base
ust

lewalk
push*

abwalk*

L
1

-
e
r
r
o

r

(d) Astro-ph

10
0

10
1

10
2

10
3

base
ust

lewalk
push*

abwalk*

L
1

-
e
r
r
o

r

(e) Email-enron

10
2

10
3

10
4

10
5

base
ust

lewalk
push*

abwalk*

L
1

-
e
r
r
o

r

(f) Amazon

10
2

10
3

10
4

10
5

base
ust

lewalk
push*

abwalk*

L
1

-
e
r
r
o

r

(g) DBLP

10
2

10
3

10
4

10
5

base
ust

lewalk
push*

abwalk*

L
1

-
e
r
r
o

r

(h) Youtube

10
2

10
3

10
4

10
5

base
ust

lewalk
push*

abwalk*

L
1

-
e
r
r
o

r

(i) Pokec

10
2

10
3

10
4

10
5

base
ust

lewalk
push*

abwalk*

L
1

-
e
r
r
o

r

(j) Orkut

Figure 6: Estimation error of different algorithms for single-source query (the triangle in each figure denotes the 𝐿1-errors of
the index)

Table 3: Top-10 similar results w.r.t. a query "Leman Akoglu" on DBLP and a query "decrease" onWordNet dataset

DBLP WordNet
Rank PageRank SimRank Res Degree Corrected-Res PageRank SimRank Res Degree Corrected-Res
1 Christos Faloutsos Sadegh M. Milajerdi Christos Faloutsos Jiawei Han Disha Makhija small diminish money food budget

2 Hanghang Tong Emaad A. Manzoor Jiawei Han Philip S. Yu Keith Henderson lower lower food money diminish

3 Stephan Gunnemann Hau Chan Philip S. Yu Christos Faloutsos Shebuti Rayana down reduce water water shrink

4 Neil Shah Shuchu Han Michael J. Franklin Michael J. Franklin Alex Beutel reduce minimum car car descend

5 Emmanuel Muller Tianmin Zou Raghu Ramakrishnan Jian Pei Bryan Hooi diminish shrink good good increase

6 B. Aditya Prakash Roni Rosenfeld Beng Chin Ooi Gerhard Weikum Brian Gallagher decline descent bad bad reduce

7 Sadegh M. Milajerdi Kailash Budhathoki Jian Pei Raghu Ramakrishnan Christos Faloutsos increase decline work work decline

8 Emaad A. Manzoor Apratim Bhattacharyya Gerhard Weikum Michael Stonebraker Hanghang Tong less minus house school lower

9 Tina Eliassi-Rad Koen Smets Jeffrey F. Naughton Beng Chin Ooi Roger Magoulas shrink descend school house depletion

10 Lei Li Disha Makhija Hector Garcia-Molina Jeffrey F. Naughton Tim O’Reilly descend increase love love temperature

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
2

10
3

10
4

10
5

10
6

ti
m

e
(s

)

T

AbWalk LocalTree Bipush

Facebook pair N

(a) Query time

10
-1

10
0

10
1

10
-3

10
-4

10
-5

10
-6

10
-7

ti
m

e
(s

)

rmax

Push Bipush

Facebook pair rmax

(b) Query time

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

e
rr

o
r

T

AbWalk LocalTree Bipush

Facebook pair N

(c) Estimation error

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-3

10
-4

10
-5

10
-6

10
-7

e
r
r
o

r

r
max

Push Bipush

Facebook pair rmax

(d) Estimation error

Figure 7: Single-pair query with varying 𝑇 and 𝑟𝑚𝑎𝑥
(Facebook)

measure of importance. Moreover, we can see that the results of Res
andDegree are very similar, which is consistent with the theoretical

analysis in [54]. Interestingly, for the corrected resistance distance,

the top-10 results are highly similar to "Leman Akoglu" and its

performance is comparable with those of PageRank and SimRank.
These results show the high effectiveness of such a corrected resis-

tance distance for measuring similarity on graphs. We can observe

similar results on WordNet. To answer a query “decrease", both

PageRank and SimRank return words that have similar meanings

w.r.t. “decrease". The results of Res are all commonly-used words,

which further demonstrate the global property of the resistance

distance metric. Likewise, for the corrected resistance distance, the

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

ti
m

e
(s

)

T

lewalk-v

lewalk

ust

abwalk*

Facebook source N

(a) Query time

10
-2

10
-1

10
0

10
1

10
2

10
-3

10
-4

10
-5

10
-6

10
-7

ti
m

e
(s

)

rmax

Push*

Facebook source rmax

(b) Query time

10
-1

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

L
1

-e
rr

o
r

T

lewalk-v

lewalk

ust

abwalk*

Facebook source N

(c) Estimation error

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-4

10
-5

10
-6

10
-7

L
1

-e
rr

o
r

r
max

Push*

Facebook source rmax

(d) Estimation error

Figure 8: Single-source query with varying 𝑇 and 𝑟𝑚𝑎𝑥
(Facebook)

results are very similar to the query word “decrease" and are also

comparable with the results of both PageRank and SimRank. These
results further confirm the effectiveness of the corrected resistance

distance.

In summary, our case studies show that the original resistance

distance may not be suitable for measuring the similarities of the

nodes in graph. However, a slight correction of the resistance dis-

tance can be a very good similarity measure. These results confirm

the theoretical analysis shown in [54]. In addition, the corrected

resistance distance is a distance metric which can be directly used

for many downstream machine learning applications [54], thus we

Efficient Resistance Distance Computation: the Power of Landmark-based Approaches SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

 0

 4

 8

 12

 16

Abwalk Localtree Push Bipush

ti
m

e
(s

)

degree
core

pagerank

(a) Query time (single pair)

0

2

4

6

lewalk-v push* abwalk*

ti
m

e
(s

)

degree
core

pagerank

(b) Query time (single source)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Abwalk Localtree Push Bipush

er
ro

r

degree
core

pagerank

(c) Estimation error (single pair)

0

10

20

30

40

50

60

lewalk-v push* abwalk*

L
1

-e
rr

o
r

degree
core

pagerank

(d) Estimation error (single source)

Figure 9: The effect of the landmark node 𝑣 (Facebook)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
-3

10
-4

10
-5

10
-6

10
-7

q
u

er
y

 t
im

e
(s

ec
)

rmax

first-in-first-out queue

priority queue

(a) time

10
0

10
1

10
2

10
3

10
-3

10
-4

10
-5

10
-6

10
-7

L
1

-e
rr

o
r

r
max

first-in-first-out queue

priority queue

(b) error

Figure 10: Evaluation of the impact of node-update ordering
in the 𝑣-absorbed push procedure (Algorithm 1)
believe that our techniques can be very useful for those applica-

tions. Both the PageRank and SimRank, however, are not a distance

metric, thus may limit their use in machine learning applications.

7 RELATEDWORK
Resistance distance computation. There is a large number of

studies on the properties of the resistance distance [8, 11, 14, 53, 55].

Previous studies have already revealed the connection between re-

sistance distance and the commute time of the random walk on

graphs [11, 53]. The connection with random spanning trees has

also revealed previously [36]. Our new theoretical results substan-

tially generalize these connections and bring new insights into

the research of resistance distance. The computation of resistance

distance is also studied in theoretical points of view [37, 38, 52].

However, most of these algorithms perform poorly in practice [44].

There exist several practical algorithms that focus on computing

the so-called spanning tree centrality [22, 40], which is a special

case of resistance distance 𝑟 (𝑠, 𝑡) when there is an edge between 𝑠
and 𝑡 . Note that those algorithms do not work for single-pair resis-

tance distance computation. Recently, Peng et al. develop several

efficient algorithms to compute the single-pair resistance distance

based on random walk sampling. Compared to their algorithms,

our landmark-based algorithms not only significantly reduce query

time, but can also support single-source query.

Personalized PageRank computation. There exist many algo-

rithms for computing personalized PageRank [4, 5, 7, 10, 16, 25, 32–

34, 47, 50, 56, 58, 60, 62, 63]. Among them, [16, 25, 50, 63] are

based on matrix operations which are often expensive for large

graphs. Another set of methods are based on random walk sam-

pling [7, 33, 47] which are also not very efficient to achieve a good

estimation accuracy on large graphs. More efficient algorithms for

personalized PageRank computation are push based deterministic

algorithms [4, 5, 10]. Recently, such push based solutions are fur-

ther optimized by a bidirectional framework that combines both

push algorithms and random walk sampling [30, 32, 34, 58–60, 62].

Motivated by this bidirectional framework, we also propose a bidi-

rectional algorithm to compute resistance distance. However, as

well discussed in Section 4, it is quite nontrivial to extend the exist-

ing randomwalk sampling algorithms (push algorithms) to our new

𝑣-absorbed random walk algorithm (𝑣-absorbed push algorithm).

8 CONCLUSION
In this paper, we study the problem of approximately computing the

resistance distance on real-life network. Based on a novel formula

for computing 𝑟 (𝑠, 𝑡), we propose several novel explanations for
resistance distance and also develop several new and efficient algo-

rithms for both single-pair and single-source resistance distance

query problems. Our results establish several interesting connec-

tions among resistance distance, random walk, random spanning

trees, and deterministic push procedure; and bring new and deep

insights on efficient resistance distance computations. We conduct

extensive experiments on 5 real-life datasets to evaluate our al-

gorithms. The results show that for single-pair query, our best

algorithm Bipush outperforms the state-of-the-art algorithms by at

least three orders of magnitude in terms of the average error using

similar query time. For single-source query, the proposed online

algorithm LEwalk is significantly faster than the baselines and the

proposed index-based method Push* is at least three orders of mag-

nitude faster than the baselines, with comparable approximation

errors (i.e., 𝐿1-error).

REFERENCES
[1] 2016. DBLP: DBLP Collaboration Network. http://dblp.uni-trier.de/~ley/db.

[2] 2022. Project WordGraph. http://www.ims.uni-stuttgart.de/en/research/projects/

wordgraph/.

[3] Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. 2018. Graph

Clustering using Effective Resistance. In 9th Innovations in Theoretical Computer
Science Conference, ITCS.

[4] Reid Andersen, Christian Borgs, Jennifer T. Chayes, John E. Hopcroft, Vahab S.

Mirrokni, and Shang-Hua Teng. 2008. Local Computation of PageRank Contribu-

tions. Internet Math. (2008), 23–45.
[5] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Partitioning

using PageRank Vectors. In FOCS. 475–486.
[6] Eugenio Angriman, Maria Predari, Alexander van der Grinten, and Henning

Meyerhenke. 2020. Approximation of the Diagonal of a Laplacian’s Pseudoinverse

for Complex Network Analysis. In ESA.
[7] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, and Natalia Osipova.

2007. Monte Carlo Methods in PageRank Computation: When One Iteration is

Sufficient. SIAM J. Numer. Anal. 45, 2 (2007), 890–904.
[8] Ravindra B Bapat. 2010. Graphs and matrices. Vol. 27. Springer.
[9] Wayne Barrett, Emily J. Evans, Amanda E. Francis, Mark Kempton, and John

Sinkovic. 2020. Spanning 2-forests and resistance distance in 2-connected graphs.

Discret. Appl. Math. 284 (2020), 341–352.
[10] Pavel Berkhin. 2006. Bookmark-Coloring Approach to Personalized PageRank

Computing. Internet Math. 3, 1 (2006), 41–62.
[11] Béla Bollobás. 1998. Modern graph theory. Vol. 184. Springer Science & Business

Media.

[12] Enrico Bozzo and Massimo Franceschet. 2013. Resistance distance, closeness,

and betweenness. Social Networks 35, 3 (2013), 460–469.
[13] Seth Chaiken. 1982. A combinatorial proof of the all minors matrix tree theorem.

SIAM Journal on Algebraic Discrete Methods 3, 3 (1982), 319–329.
[14] Pavel Chebotarev and Elena Deza. 2020. Hitting time quasi-metric and its forest

representation. Optim. Lett. (2020), 291–307.
[15] Paul F. Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman,

and Shang-Hua Teng. 2011. Electrical flows, laplacian systems, and faster ap-

proximation of maximum flow in undirected graphs. In STOC.
[16] Mustafa Coskun, Ananth Grama, and Mehmet Koyutürk. 2016. Efficient Pro-

cessing of Network Proximity Queries via Chebyshev Acceleration. In KDD.
1515–1524.

[17] Mustafa Coskun, Ananth Grama, and Mehmet Koyutürk. 2018. Indexed Fast

Network Proximity Querying. VLDB 11, 8 (2018), 840–852.

[18] Peter G Doyle and J Laurie Snell. 1984. Random walks and electric networks.
Vol. 22. American Mathematical Soc.

[19] Peter G. Doyle and J. Laurie Snell. 1984. Random Walks and Electrical Networks.

Mathematical Association of America, Washington (1984).

[20] François Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. 2007.

Random-Walk Computation of Similarities between Nodes of a Graph with

Application to Collaborative Recommendation. IEEE Trans. Knowl. Data Eng. 19,
3 (2007), 355–369.

[21] Massimo Franceschet and Enrico Bozzo. 2017. Approximations of the Generalized

Inverse of the Graph Laplacian Matrix. Internet Math. (2017).

http://dblp.uni-trier.de/~ley/db
http://www.ims.uni-stuttgart.de/en/research/projects/wordgraph/
http://www.ims.uni-stuttgart.de/en/research/projects/wordgraph/

SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang

[22] Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. 2016. Efficient Algorithms

for Spanning Tree Centrality. In IJCAI. 3733–3739.
[23] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context

similarity. In KDD.
[24] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In WWW.

271–279.

[25] Jinhong Jung, Namyong Park, Lee Sael, and U Kang. 2017. BePI: Fast andMemory-

Efficient Method for Billion-Scale Random Walk with Restart. In SIGMOD. 789–
804.

[26] Heung-Nam Kim and Abdulmotaleb El-Saddik. 2011. Personalized PageRank

vectors for tag recommendations: inside FolkRank. In ACM Conference on Recom-
mender Systems.

[27] Jérôme Kunegis and Stephan Schmidt. 2007. Collaborative Filtering Using Elec-

trical Resistance Network Models. In Industrial Conference on Data Mining.
[28] Katz Leo. 1953. A new status index derived from sociometric analysis. Psychome-

trika 18, 1 (1953), 39–43.
[29] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[30] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, and GuorenWang. 2022. Efficient Per-

sonalized PageRank Computation: A Spanning Forest Sampling based Approach.

In SIGMOD. 1996–2008.
[31] David Liben-Nowell and Jon M. Kleinberg. 2003. The link prediction problem for

social networks. In CIKM.

[32] Dandan Lin, Raymond Chi-Wing Wong, Min Xie, and Victor Junqiu Wei. 2020.

Index-Free Approach with Theoretical Guarantee for Efficient Random Walk

with Restart Query. In ICDE. 913–924.
[33] Qin Liu, Zhenguo Li, John C. S. Lui, and Jiefeng Cheng. 2016. PowerWalk: Scalable

Personalized PageRank via Random Walks with Vertex-Centric Decomposition.

In CIKM. 195–204.

[34] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2016. Personalized PageR-

ank Estimation and Search: A Bidirectional Approach. In WSDM. 163–172.

[35] Peter Lofgren and Ashish Goel. 2013. Personalized PageRank to a Target Node.

CoRR abs/1304.4658 (2013). arXiv:1304.4658 http://arxiv.org/abs/1304.4658

[36] László Lovász. 1993. Random walks on graphs. Combinatorics, Paul erdos is eighty
2, 1-46 (1993), 4.

[37] Russell Lyons and Shayan Oveis Gharan. 2018. Sharp bounds on random walk

eigenvalues via spectral embedding. International Mathematics Research Notices
2018, 24 (2018), 7555–7605.

[38] Aleksander Madry, Damian Straszak, and Jakub Tarnawski. 2015. Fast Generation

of Random Spanning Trees and the Effective Resistance Metric. In SODA. 2019–
2036.

[39] Fragkiskos D. Malliaros, Christos Giatsidis, Apostolos N. Papadopoulos, and

Michalis Vazirgiannis. 2020. The core decomposition of networks: theory, algo-

rithms and applications. VLDB (2020), 61–92.

[40] Charalampos Mavroforakis, Richard Garcia-Lebron, Ioannis Koutis, and Evimaria

Terzi. 2015. Spanning Edge Centrality: Large-scale Computation and Applications.

In WWW. 732–742.

[41] Qiaozhu Mei, Dengyong Zhou, and Kenneth Ward Church. 2008. Query sugges-

tion using hitting time. In CIKM.

[42] Eisha Nathan and David A. Bader. 2018. Incrementally updating Katz centrality

in dynamic graphs. Soc. Netw. Anal. Min. 8, 1 (2018), 26.
[43] Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. 2021. Graph

Kernels: A Survey. J. Artif. Intell. Res. 72 (2021), 943–1027.
[44] Pan Peng, Daniel Lopatta, Yuichi Yoshida, and Gramoz Goranci. 2021. Local

Algorithms for Estimating Effective Resistance. In KDD. 1329–1338.
[45] James Gary Propp and David Bruce Wilson. 1998. How to get a perfectly random

sample from a generic Markov chain and generate a random spanning tree of a

directed graph. Journal of Algorithms 27, 2 (1998), 170–217.
[46] Purnamrita Sarkar, Andrew W. Moore, and Amit Prakash. 2008. Fast incremental

proximity search in large graphs. In ICML.
[47] Tamás Sarlós, András A. Benczúr, Károly Csalogány, Dániel Fogaras, and Balázs

Rácz. 2006. To randomize or not to randomize: space optimal summaries for

hyperlink analysis. In WWW. 297–306.

[48] Aaron Schild, Satish Rao, and Nikhil Srivastava. 2018. Localization of Electrical

Flows. In SODA, Artur Czumaj (Ed.).

[49] Jieming Shi, Tianyuan Jin, Renchi Yang, Xiaokui Xiao, and Yin Yang. 2020. Real-

time Index-Free Single Source SimRank Processing on Web-Scale Graphs. Proc.
VLDB Endow. 13, 7 (2020), 966–978.

[50] Kijung Shin, Jinhong Jung, Lee Sael, and U Kang. 2015. BEAR: Block Elimination

Approach for Random Walk with Restart on Large Graphs. In SIGMOD, Timos K.

Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). 1571–1585.

[51] Ali Kemal Sinop, Lisa Fawcett, Sreenivas Gollapudi, and Kostas Kollias. 2021.

Robust Routing Using Electrical Flows. In SIGSPATIAL ’21: 29th International
Conference on Advances in Geographic Information Systems.

[52] Daniel A. Spielman and Nikhil Srivastava. 2008. Graph sparsification by effective

resistances. In STOC.
[53] Prasad Tetali. 1991. Random walks and the effective resistance of networks.

Journal of Theoretical Probability 4, 1 (1991), 101–109.

[54] Ulrike von Luxburg, Agnes Radl, and Matthias Hein. 2010. Getting lost in space:

Large sample analysis of the resistance distance. In NIPS. 2622–2630.
[55] Ulrike Von Luxburg, Agnes Radl, and Matthias Hein. 2010. Hitting and commute

times in large graphs are often misleading. arXiv:1003.1266 (2010).
[56] Hanzhi Wang, Zhewei Wei, Junhao Gan, Sibo Wang, and Zengfeng Huang. 2020.

Personalized PageRank to a Target Node, Revisited. In KDD. 657–667.

[57] Shuguang Wang and Milos Hauskrecht. 2010. Effective query expansion with

the resistance distance based term similarity metric. In SIGIR.
[58] SiboWang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 2016. HubPPR:

Effective Indexing for Approximate Personalized PageRank. VLDB 10, 3 (2016),

205–216.

[59] Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei, Wenqing

Lin, Yin Yang, and Nan Tang. 2019. Efficient Algorithms for Approximate Single-

Source Personalized PageRank Queries. TODS (2019), 18:1–18:37.
[60] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA:

Simple and Effective Approximate Single-Source Personalized PageRank. In KDD.
505–514.

[61] David Bruce Wilson. 1996. Generating Random Spanning Trees More Quickly

than the Cover Time. In STOC.
[62] Hao Wu, Junhao Gan, Zhewei Wei, and Rui Zhang. 2021. Unifying the Global and

Local Approaches: An Efficient Power Iteration with Forward Push. In SIGMOD.
1996–2008.

[63] Minji Yoon, Jinhong Jung, and U Kang. 2018. TPA: Fast, Scalable, and Accurate

Method for Approximate Random Walk with Restart on Billion Scale Graphs. In

ICDE. 1132–1143.
[64] Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan Huang, and Arye Nehorai. 2018.

RetGK: Graph Kernels based on Return Probabilities of Random Walks. In

NeurIPS.

http://snap.stanford.edu/data
https://arxiv.org/abs/1304.4658
http://arxiv.org/abs/1304.4658

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Existing solutions and their limitations

	3 New Theoretical Results
	3.1 New formula for computing resistance distance
	3.2 A v-absorbed random walk interpretation
	3.3 A spanning forest interpretation
	3.4 A deterministic v-absorbed push procedure

	4 Single-Pair Query Computation
	4.1 A v-absorbed random walk based algorithm
	4.2 A local spanning tree sampling algorithm
	4.3 A v-absorbed push based algorithm
	4.4 A bidirectional approach
	4.5 Heuristic choices of the landmark node v

	5 Single-Source Query Computation
	5.1 Challenges of single-source query
	5.2 The loop-erased random walk based algorithm
	5.3 The index-based algorithms

	6 Experiments
	6.1 Experimental setup
	6.2 Results of single-pair query
	6.3 Results of single-source query
	6.4 The effect of different parameters
	6.5 The impact of the landmark node
	6.6 The impact of the node ordering
	6.7 Case Studies

	7 Related Work
	8 Conclusion
	References

