
Efficient Personalized PageRank Computation: The Power of
Variance-Reduced Monte Carlo Approaches

ABSTRACT
Personalized PageRank (PPR) computation is a fundamental prob-

lem in graph analysis. The state-of-the-art algorithms for PPR com-

putation are based on a bidirectional framework which include

a deterministic forward push and a Monte Carlo sampling proce-

dure. The Monte Carlo sampling procedure, however, often has a

relatively-large variance, thus reducing the performance of the PPR

computation algorithms. To overcome this issue, we develop two

novel variance-reduced Monte Carlo techniques for PPR computa-

tion. Our first technique is to apply power iterations to reduce the

variance of theMonte Carlo sampling procedure. We prove that con-

ducting few power iterations can significantly reduce the variance

of existing Monte Carlo estimators, only with few additional costs.

Moreover, we show that such a simple and novel variance-reduced

Monte Carlo technique can achieve comparable estimation accuracy

and the same time complexity as the state-of-the-art bidirectional

algorithms. Our second technique is a novel progressive sampling

method which uses the historical information of former samples

to reduce the variance of the Monte Carlo estimator. We develop

several novel PPR computation algorithms by integrating both of

these variance reduction techniques with two existing Monte Carlo

sampling approaches, including random walk sampling and span-

ning forests sampling. Finally, we conduct extensive experiments

on 5 real-life large graphs to evaluate our solutions. The results

show that our algorithms can achieve much higher PPR estimation

accuracy by using much less time, compared to the state-of-the-art

bidirectional algorithms.

1 INTRODUCTION
Personalized PageRank is an important and well-known concept

in network analysis. Given a directed and unweighted graph 𝐺 =

(𝑉 , 𝐸) with 𝑛 nodes, a decay parameter 𝛼 , and a source distribution

𝝈 , the personalized PageRank (PPR) vector 𝝅𝝈 is defined as the

probability that an 𝛼-random walk starts from a source node 𝑠 ,

which is sampled from the distribution 𝝈 , and stops at each node

𝑢 ∈ 𝑉 . Here an 𝛼-random walk is a random surfer on graph which

stops at the current node with probability 𝛼 , and walks to a random

outgoing neighbor of the current node with probability 1 − 𝛼 .
Intuitively, by the above definition, the PPR value 𝝅𝝈 (𝑡) mea-

sures the importance of a node 𝑡 with respect to (w.r.t.) the source

distribution 𝝈 . When the source distribution 𝝈 is a one-hot vector

e𝑠 (only 𝑠-th element is 1 and all the other elements are 0), the

resulting PPR vector is called a single-source PPR vector w.r.t. the

source node 𝑠 [19, 21, 42]. Such a single-source PPR vector can

measure the similarities between the source node 𝑠 and the other

nodes in the graph, thus it is widely used in many graph analysis

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’23, June 03–05, 2022, Woodstock, NY
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

applications, such as web search [6, 21], link prediction [4], com-

munity detection [1, 35], recommendation [11, 23], and machine

learning [7, 24, 46]. Additionally, when the source distribution is

defined as 𝝅 =
∑
𝑢∈𝑉

1

𝑛𝝅𝑢 , the PPR vector is the classic PageRank

centrality vector, which is a fundamental metric to measure the

importance of the nodes in a graph [10, 15]. Among these applica-

tions, graph clustering [27, 35] and graph learning [7, 24, 46] often

require a small 𝛼 (e.g., 𝛼 = 0.01), while node similarity measure and

node ranking [6, 15, 21, 25] typically need a relatively-large 𝛼 (e.g.,

𝛼 = 0.2).

Due to such a wide range of practical applications, there exist

many algorithms to efficiently compute the PPR vector of a graph.

All of these algorithms can be roughly classified into two categories:

deterministic algorithms and approximate algorithms. The deter-

ministic PPR algorithms are mainly based on the power iteration

[8, 34, 47] or the forward push techniques [1, 5, 21]. To achieve a

high accuracy, such deterministic PPR algorithms are often inef-

ficient on large graphs as they typically requires a large number

of iterations. To address this issue, many approximate algorithms

based on Monte Carlo sampling are proposed, including both the

𝛼-random walk sampling [2, 31] and the spanning forests sampling

[27]. Recently, such Monte Carlo based approximate algorithms are

further improved by the state-of-the-art bidirectional algorithms

[27, 28, 31, 42, 45], which integrate both forward push and Monte

Carlo sampling techniques. Despite many efforts have been made,

the practical performance of these bidirectional algorithms is still

unsatisfactory to achieve a high estimation accuracy [27], espe-

cially when the decay parameter 𝛼 is small (e.g., 𝛼 = 0.01) which is

often the demanding case for machine learning related applications

[7, 35, 46]. The main reason behind this may be that the Monte

Carlo sampling procedure in these bidirectional algorithms often

have a large variance, thus it needs to draw a large number of

samples to achieve a high accuracy.

To overcome this problem, we propose two novel variance reduc-

tion techniques to reduce the variances of two existing Monte Carlo

sampling procedures, including both the 𝛼-random walk (𝛼-RW)

sampling [2, 31] and spanning forests (SF) sampling [27]. Specif-

ically, our first variance reduction technique is to apply power

iterations on the existing Monte Carlo estimators to reduce their

variances. We prove that with only few additional power iterations,

the variance of the existing Monte Carlo estimators can be substan-

tially reduced (the variance is reduced by (1 − 𝛼)2𝐾 times by only

performing 𝐾 power iterations). Note that compared to the state-of-

the-art bidirectional algorithm SpeedPPR [45], the implementation

of our variance-reduced Monte Carlo technique is much simpler.

Moreover, we show that such a simple and novel variance-reduced

Monte Carlo technique can achieve comparable accuracy and the

same time complexity as the SpeedPPR algorithm.

Our second technique is a novel progressive sampling strategy

which utilizes the historical information of former samples to re-

duce the variance of the existing Monte Carlo estimators. We show

that by using the estimator constructed by the former samples,

we can obtain useful information to improve the variance of the

sampling procedure. Furthermore, such a progressive sampling tech-

nique can be easily integrated with our first power-iteration based

technique to further reduce the variance. We develop several novel

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGMOD ’23, June 03–05, 2022, Woodstock, NY

PPR computation algorithms by integrating our variance reduction

techniques with two existing Monte Carlo sampling approaches,

including the 𝛼-random walk sampling and spanning forests sam-

pling. Finally, the results of comprehensive experiments on 5 large

real-world graphs demonstrate the efficiency and effectiveness of

the proposed solutions. To summarize, the main contributions of

this work are as follows.

New theoretical results. First, we present theoretical analyses for
the variances of two existing Monte Carlo sampling techniques. A

formal comparison of the variances of these existing estimators is

also given. Second, we develop two novel and powerful variance

reduction techniques, including a power-iteration and a progressive

sampling based techniques, to reduce the variances of the existing

estimators. Theoretical analyses for the variance reduction of our

techniques are also presented.

Novel PPR computation algorithms.We develop several novel

PPR computation algorithms by integrating our variance reduction

techniques with two existing Monte Carlo sampling methods. Com-

pared to the state-of-the-art SpeedPPR algorithm, our algorithms

are extremely simple and easy to implement. Moreover, unlike all

existing bidirectional algorithms, our algorithms do not use the

forward push procedure. Instead, we use few power iterations as

well as a progressive sampling technique to reduce the variance.

To our knowledge, this is first work that can outperform existing

bidirectional algorithms without using the forward push technique.

Extensive experiments.We conduct extensive experiments on

5 large real-life graphs to evaluate our algorithms. The results

show that our algorithms substantially outperform the state-of-

the-art algorithms on most datasets, in terms of both accuracy

and running time. For example, on a graph with more than 3M

nodes and 117M edges, when 𝛼 = 0.01, our best algorithm can

compute the single-source PPR vector with 𝐿1 error 4.6 × 10
−9

using only 114 seconds, while SpeedPPR can only obtain the 𝐿1

error 1.8 × 10
−4

using 160 seconds. For reproducibility purpose,

the source code of this paper is released at an anonymous link

https://anonymous.4open.science/r/pvr-0C72.

2 PRELIMINARIES
Given a directed and unweighted graph 𝐺 = (𝑉 , 𝐸). Denote by 𝑨
the adjacency matrix of 𝐺 , 𝑫𝑜𝑢𝑡 be the diagonal matrix with each

element (𝑫𝑜𝑢𝑡)𝑖𝑖 = 𝑑𝑜𝑢𝑡 (𝑖), the out degree of node 𝑖 . P = 𝑨𝑫−1

𝑜𝑢𝑡 is

the probability transition matrix. PageRank [25] can be modeled

as an 𝛼-random walk process. Given a source distribution 𝝈 , we
first sample a node 𝑠 from the distribution 𝝈 . Then, an 𝛼-random
walk starts from 𝑠; and the personalized PageRank (PPR) value of

node 𝑢 is defined as the probability that the walk stops at 𝑢. Let e𝑠
be a one-hot vector with the 𝑠-th element equals 1, and the other

elements are 0. Let ®1 be an all-1 vector. When 𝝈 = e𝑠 , we use 𝝅𝑠 to
denote the personalized PageRank vector with respect to (w.r.t.) the

source 𝑠 . When 𝝈 =
®1
𝑛 , we use 𝝅 to denote the PageRank centrality

vector. We can also represent PageRank values in a matrix form.

Let 𝚷 be the personalized PageRank matrix, where (𝚷)𝑠𝑡 denotes
the personalized PageRank value 𝜋 (𝑠, 𝑡) w.r.t. to the source 𝑠 . We

have 𝚷 = 1

𝛼 (I − (1 − 𝛼)P)
−1
. It follows that 𝝅𝑠 is the solution of

a linear system A𝛼x = b, where A𝛼 = I − (1 − 𝛼)P and b = 𝛼e𝑠 .
Also, when b = 𝛼

®1
𝑛 , the solution vector of A𝛼x = b is the PageRank

centrality vector 𝝅 .
Given a graph 𝐺 , a rooted spanning forest is a subgraph of 𝐺

without cycle. A rooted spanning forest may have several connected

components, each connected component has a unique node called

"root" where all nodes in that component has a unique path towards

the root. As a result, each node in 𝐺 belongs to one of such con-

nected components. We say a node 𝑠 is rooted in 𝑡 when 𝑠 belongs

to the connected component in which 𝑡 is the root. For convenience,

we denote 𝜌 [𝑠] = 𝑡 .
For an 𝑛-dimensional vector x, we define the 𝐿1-norm of x as

∥x∥1 =
∑
𝑢∈𝑉 |x(𝑢) |, and the𝐿2-norm of x as ∥x∥2 =

√︁∑
𝑢∈𝑉 (x(𝑢))2.

For a random vector x, we evaluate the variance of x by 𝑉𝑎𝑟 [x] =
𝐸 [∥x − 𝐸 [x] ∥2

2
]. Also, it can be written as the sum of the variance

of all its elements, 𝑉𝑎𝑟 [x] = ∑
𝑢∈𝑉 𝑉𝑎𝑟 [x(𝑢)].

In this paper, we focus on the following problem.

Definition 2.1. (Approximate personalized PageRank (PPR) com-

putation) Given a relative error threshold 𝜖 > 0, a PPR threshold

𝜇 and a source distribution 𝝈 , the approximate PPR computation

problem aims to calculate an estimation 𝝅̂𝝈 (𝑢) for each node 𝑢 ∈ 𝑉
with 𝝅𝝈 (𝑢) ≥ 𝜇 such that |𝝅̂𝝈 (𝑢) − 𝝅𝝈 (𝑢) | ≤ 𝜖𝝅𝝈 (𝑢) with a small

failure probability 𝑝 𝑓 .

When 𝝈 is a one-hot vector, i.e. 𝝈 = e𝑠 , the problem is identical

to a single-source personalized PageRank query [42]. When 𝝈 =
®1
𝑛 ,

the problem is to compute a PageRank centrality vector. In practice,

the threshold 𝜇 is often set to
1

𝑛 so that it can guarantee a relative

error for most relevant nodes [42, 45]. The failure probability𝑝 𝑓 is

also set to
1

𝑛 to ensure a vary small failure probability [42, 45].

2.1 Basic PPR Computation Techniques
Existing personalized PageRank estimators. There mainly exist

three estimators for estimating single-source personalized PageR-

ank vector 𝝅𝑠 . One is based on the 𝛼-random walk sampling, and

the other two are based on spanning forests sampling.

Lemma 2.2. ([31, 42]) Let x̄ be a vector of random variables. If an
𝛼-random walk starts from 𝑠 and stops at node 𝑡 , we set x̄ = e𝑡 . Then,
x̄ is an unbiased estimator of 𝝅𝑠 , i.e., 𝐸 [x̄] = 𝝅𝑠 .

Lemma 2.3. ([27]) Let 𝐹 ∈ F be a random rooted spanning forest
and 𝜌 (𝐹) be the root set of 𝐹 . Suppose that 𝐹 is sampled with proba-
bility 𝑃 (𝐹) ∝∏

𝑢∈𝜌 (𝐹)
𝛼

1−𝛼 𝑑𝑜𝑢𝑡 (𝑢), and 𝑠 is rooted in 𝑡 in 𝐹 . Denote
by x̃ a vector of random variables with x̃ = e𝑡 . Then, x̃ is an unbiased
estimator of 𝝅𝑠 , i.e., 𝐸 [x̃] = 𝝅𝑠 .

If the graph is undirected, we have 𝑑𝑖𝑛 (𝑢) = 𝑑𝑜𝑢𝑡 (𝑢) = 𝑑 (𝑢).
Then, there is an improved spanning forest based estimator which

considers the partition information of the spanning forest [27].

Lemma 2.4. ([27]) Let 𝐹 ∈ F be a random rooted spanning forest
and 𝜌 (𝐹) be the root set of 𝐹 . Suppose that 𝐹 is sampled with prob-
ability 𝑃 (𝐹) ∝ ∏

𝑢∈𝜌 (𝐹)
𝛼

1−𝛼 𝑑 (𝑢), and 𝑉𝜌 [𝑠] is the node set of the
connected component of 𝐹 that 𝑠 belongs to. Let ¤x be a a vector of
random variables with ¤x =

∑
𝑢∈𝑉𝜌 [𝑠]

𝑑 (𝑢)∑
𝑣∈𝑉𝜌 [𝑠] 𝑑 (𝑣)

e𝑢 . Then, ¤x is an

unbiased estimator of 𝝅𝑠 , i.e., 𝐸 [¤x] = 𝝅𝑠 .

Note that all the above three estimators can be easily general-

ized for arbitrary source distribution 𝝈 , which we will discuss in

Section 3 and Section 4.

Loop-erased 𝛼-randomwalk. In order to sample spanning forests

from the desired probability distribution, a loop-erased 𝛼-random

walk sampling algorithm was proposed in [27] which is a gener-

alization of the classic Wilson algorithm [44]. The algorithm is

outlined in Algorithm 1. First, the algorithm fixes an ordering of

𝑉 (Line 2). Then, it traverses all the nodes following this ordering

(Line 3-14). It makes use of an array 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 to record whether a

https://anonymous.4open.science/r/pvr-0C72

Efficient Personalized PageRank Computation: The Power of Variance-Reduced Monte Carlo Approaches SIGMOD ’23, June 03–05, 2022, Woodstock, NY

Algorithm 1: Loop-erased 𝛼-random walk [27]

Input: A graph𝐺 = (𝑉 , 𝐸) and a decay parameter 𝛼
Output: 𝑅𝑜𝑜𝑡 [𝑢] for all𝑢 ∈ 𝑉

1 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢] ← 𝑓 𝑎𝑙𝑠𝑒 , 𝑁𝑒𝑥𝑡 [𝑢] ← −1, 𝑅𝑜𝑜𝑡 [𝑢] = −1 for𝑢 ∈ 𝑉 ;

2 Fix an arbitrary ordering (𝑣1, · · · , 𝑣𝑛) of𝑉 ;

3 for 𝑖 = 1 : 𝑛 do
4 𝑢 = 𝑣𝑖 ;

5 while !𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢] do
6 if 𝑟𝑎𝑛𝑑 () < 𝛼 then
7 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢] ← 𝑡𝑟𝑢𝑒 , 𝑅𝑜𝑜𝑡 [𝑢] ← 𝑢;

8 else
9 𝑁𝑒𝑥𝑡 [𝑢] ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑢) ;

10 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢];

11 𝑟 ← 𝑅𝑜𝑜𝑡 [𝑢],𝑢 ← 𝑣𝑖 ;

12 while !𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢] do
13 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢] ← 𝑡𝑟𝑢𝑒 , 𝑅𝑜𝑜𝑡 [𝑢] ← 𝑟 ;

14 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢];

15 return 𝑅𝑜𝑜𝑡 [𝑢] for all𝑢 ∈ 𝑉 ;

node has been added into the spanning forest, uses an array𝑁𝑒𝑥𝑡 to

maintain the next node in the spanning forest, and utilizes an array

𝑅𝑜𝑜𝑡 to store the root information. An 𝛼-random walk is simulated

until it stops or hits the former trajectories (Line 4-10), and the loops

in the walk are erased by retracing the trajectories (Line 11-14).

The time complexity of Algorithm 1 is
1

𝛼

∑
𝑢∈𝑉 𝜋 (𝑢,𝑢), which is

smaller than sampling 𝑛 𝛼-random walks (i.e.,
𝑛
𝛼) [27]. When the

algorithm terminates, a spanning forest 𝐹 is maintained in 𝑅𝑜𝑜𝑡

with probability 𝑃 (𝐹) ∝∏
𝑢∈𝜌 (𝐹)

𝛼
1−𝛼 𝑑𝑜𝑢𝑡 (𝑢).

Forward search. As shown in Algorithm 2, the forward search

method can be deemed as a deterministic version of 𝛼-random walk

sampling [1]. It maintains the residues r̂(𝑢) and reserves 𝝅̂𝝈 (𝑢) for
all 𝑢 ∈ 𝑉 , where r̂ and 𝝅̂𝝈 are initialized as 𝝈 and 0 respectively

(Lines 1). The algorithm performs a deterministic traversal on the

graph and updates r̂ and 𝝅̂𝝈 accordingly (Lines 2-6). Specifically,

for each node 𝑢 with residual larger than 𝑑𝑜𝑢𝑡 (𝑢) · 𝑟𝑚𝑎𝑥 , it converts
𝛼 fraction of 𝑢’s residual into its reserve (Line 3), and equally dis-

tributes the other 1 − 𝛼 fraction of 𝑢’s residual to its out-neighbors

(Line 5-6). During this procedure, an invariant is maintained for all

𝑢 ∈ 𝑉 [1]:

𝝅𝝈 (𝑢) = 𝝅̂𝝈 (𝑢) +
∑︁
𝑣∈𝑉

r̂(𝑣)𝝅𝑣 (𝑢). (1)

It was shown that the algorithm runs in𝑂 (1/𝑟𝑚𝑎𝑥) time [1]. When

𝑟𝑚𝑎𝑥 approaches 0, 𝝅̂𝝈 (𝑢) converges to 𝝅𝝈 (𝑢). Moreover, it is easy

to see that Algorithm 2 can also be used for any source distribution.

2.2 The State-of-the-art Solutions
For single-source PPR query,Wang et al. proposed FORA [42] which

combines forward search and 𝛼-random walk sampling. Specifi-

cally, to answer a query for 𝝅𝑠 , it first performs a forward search,

then generates 𝛼-random walks from those nodes with non-zero

residues. ResAcc [28] and SpeedPPR [45] further improved FORA
by accumulating residues and combining power iterations with for-

ward search. SpeedPPR outperforms all former approximate PPR

computation algorithms on directed graphs. However, all these algo-

rithms perform poorly when 𝛼 is small (e.g., 𝛼 = 0.01). To address

the small 𝛼 case, Liao et al. [27] proposed SpeedL and SpeedLV
to further improve SpeedPPR by combining forward push with

spanning forests sampling. When the graph is undirected, SpeedL
and SpeedLV can achieves the state-of-the-art performance for the

small 𝛼 case.

Unlike single-source personalized PageRank computation, algo-

rithms for PageRank centrality computation are less well studied.

Algorithm 2: Forward Search [1]

Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , threshold 𝑟max

Output: Residual vector r̂ and estimation vector 𝝅̂𝝈
1 r̂← 𝝈 , 𝝅̂𝝈 ← 0;
2 while ∃𝑢 ∈ 𝑉 such that r̂(𝑢) ≥ 𝑑𝑜𝑢𝑡 (𝑢) · 𝑟𝑚𝑎𝑥 do
3 𝝅̂𝝈 (𝑢) ← 𝝅̂𝝈 (𝑢) + 𝛼 r̂(𝑢) ;
4 for each 𝑤 ∈ 𝑁𝑜𝑢𝑡 (𝑢) do
5 r̂(𝑤) ← r̂(𝑤) + (1 − 𝛼) r̂(𝑢)

𝑑𝑜𝑢𝑡 (𝑢)
;

6 r̂(𝑢) ← 0;

7 return r̂, 𝝅̂𝝈 ;

Note that 𝝅 =
∑
𝑠∈𝑉

1

𝑛𝝅𝑠 , 𝝅 can be simply estimated by first uni-

formly sampling a node𝑢 ∈ 𝑉 , and then running an 𝛼-randomwalk

from 𝑢. Suppose that the walk stops at 𝑡 , then e𝑡 is an unbiased

estimator of 𝝅 . To our knowledge, one of best existing approximate

algorithms that is tailored to PageRank centrality computation is

such a Monte Carlo solution proposed in [2]. Note that FORA can

also be extended to PageRank centrality computation [41], which

we will add for comparison in our experiments (see Section 5.4).

3 NEW 𝛼-RANDOMWALK ESTIMATORS
In this section, we first conduct a detailed analysis for the variance

of the traditional 𝛼-random walk (𝛼-RW) estimator x̄. Then, we
develop two novel variance reduction techniques to reduce the

variance of x̄. Our first technique is to apply power iterations to

reduce the variance, while the second technique is to utilize the

historical information of former samples to reduce the variance.

3.1 Variance Analysis of 𝛼-RW Estimator
Although the 𝛼-random walk sampling is widely used to estimate a

single-source personalized PageRank vector 𝝅𝑠 , it is easy to extend

it to estimate PPR vector with any source distribution𝝈 . Specifically,
similar to Lemma 2.2, we have the following results.

Lemma 3.1. Let x̄ be a vector of random variables. If an 𝛼-random
walk starts from a node sampled from 𝝈 and stops at node 𝑡 , we set
x̄ = e𝑡 . Then, x̄ is an unbiased estimator of 𝝅𝝈 , i.e., 𝐸 [x̄] = 𝝅𝝈 .

Proof. By the linearity of expectation, since𝝅𝝈 =
∑
𝑢∈𝑉 𝝈 (𝑢)𝝅𝑢 ,

we have 𝐸 [x̄] = ∑
𝑢∈𝑉 𝝈 (𝑢)𝝅𝑢 = 𝝅𝝈 . □

Based on Lemma 3.1, we can easily obtain a basic Monte Carlo

algorithm [2], namely MCW, which is shown in Algorithm 3. If

we have built an alias table [36] from 𝝈 , the process of sampling a

node from a certain distribution (Line 3) can be implemented via

an alias sampling process using 𝑂 (1) time. Thus, each walk can be

simulated within𝑂 (1

𝛼) time in expectation. We derive the variance

of x̄ as follows.

Lemma 3.2. Suppose that we simulate 𝛼-random walks from a
node sampled from 𝝈 , and use x̄ as an unbiased estimator of 𝝅𝝈 .
Then, the variance of the estimator x̄ is: 𝑉𝑎𝑟 [x̄] = 1 − ∥𝝅𝝈 ∥2

2
.

Proof. Let x̄(𝑡) be the random variable such that if an 𝛼-random

walk starts from a node sampled from 𝝈 and stops at 𝑡 , x̄(𝑡) = 1, and

x̄(𝑡) = 0 otherwise. Then, we have 𝐸 [(x̄(𝑡))2] = 𝐸 [x̄(𝑡)] = 𝝅𝝈 (𝑡).
Thus, 𝑉𝑎𝑟 [x̄(𝑡)] = 𝐸 [(x̄(𝑡))2] − 𝐸 [x̄(𝑡)]2 = 𝝅𝝈 (𝑡) − (𝝅𝝈 (𝑡))2. So
the variance of x̄ can be written as 𝑉𝑎𝑟 [x̄] = ∑

𝑡 ∈𝑉 𝑉𝑎𝑟 [x̄(𝑡)] =
1 −∑𝑡 ∈𝑉 (𝝅𝝈 (𝑡))2 = 1 − ∥𝝅𝝈 ∥2

2
. □

According to Lemma 3.2, the variance of x̄ is closely related to

the distribution 𝝅𝝈 . Since ∥𝝅𝝈 ∥1 = 1, we have
1

𝑛 ≤ ∥𝝅𝝈 ∥
2

2
≤ 1.

When 𝝅𝝈 is a one-hot distribution (i.e., 𝝈 = e𝑠 and 𝝅𝝈 = e𝑠 , which
is the case that there is no outgoing-edge from 𝑠), we have𝑉𝑎𝑟 [x̄] =

SIGMOD ’23, June 03–05, 2022, Woodstock, NY

Algorithm 3:MCW [2]

Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , sample size𝑇
Output: The estimated PageRank vector 𝝅̂𝝈

1 𝝅̂𝝈 ← 0;
2 for 𝑖 = 1 : 𝑇 do
3 Sample a node 𝑠′ from 𝝈 ;

4 Run an 𝛼-random walk from 𝑠′ ; suppose that it stops at 𝑡 ;
5 𝝅̂𝝈 (𝑡) ← 𝝅̂𝝈 (𝑡) + 1

𝑇
;

6 return 𝝅̂𝝈 ;

𝑣! 𝑣" 𝑣# 𝑣" 𝑣$

+0 +1 +0 +1 +0

+0.4

𝑣! 𝑣" 𝑣# 𝑣" 𝑣$

+0.45 +0.55 +0.45 +0.55 +0.45

+0.49

𝑣"

𝜋% 𝑣" = 0.5

𝑥!

𝑥"

Figure 1: Illustration of the variances of different estimators. Here
both 𝑥1 and 𝑥2 are unbiased estimators of 𝝅𝝈 (𝑣2) and 𝑉𝑎𝑟 [𝒙2] <
𝑉𝑎𝑟 [𝒙1].

1 − 1 = 0. In this case, each 𝛼-random walk starts from 𝑠 can only

stop at 𝑠 . Thus, the estimation of such a PPR vector is easy. However,

when𝝅𝝈 is a "balanced" distribution (i.e., ®1𝑛 , the all-one distribution),
the variance becomes𝑉𝑎𝑟 [x̄] = 1−∑𝑡 ∈𝑉 (𝝅𝝈 (𝑡))2 = 1− 1

𝑛 . Clearly,

such a case is the hardest case to estimate the PPR vector using

𝛼-random walk sampling.

Note that the variance plays an important role in sampling-based

approximate algorithms. To illustrate this, we give an example

in Fig. 1. Suppose that both 𝒙1 and 𝒙2 are unbiased estimators

of 𝝅𝝈 (𝑣2) = 0.5, i.e., 𝐸 [𝒙1] = 𝐸 [𝒙2] = 𝝅𝝈 (𝑣2). In practice, to

achieve a high accuracy, approximate algorithms always draw a

number of samples and take the average value over all samples as

an estimator. As shown in Fig. 1, the sample value of 𝒙2 is close

to each other, thus 𝑉𝑎𝑟 [𝒙2] < 𝑉𝑎𝑟 [𝒙1]. Although they have the

same expectation value, with 5 samples, the estimation value of 𝒙1

is 0.4 while the estimation value of 𝒙2 is 0.49, which is closer to the

exact value. Estimator with smaller variance requires less samples

to achieve a desired accuracy, thus reducing the running time for

drawing samples. The worst-case time complexity of Algorithm 3

to guarantee an (𝜖, 𝛿)-error is 𝑂 (𝑛𝑙𝑜𝑔𝑛
𝜖2
), by the standard Chernoff

bound [42]. Below, we will propose two novel ideas to reduce the

variance of x̄. We show that the variance reduction of our technique

is substantial with only few additional time costs.

3.2 Variance Reduction by Power Iterations
The intuition of our first technique is that the closer an estimator is

concentrated around 𝝅𝝈 , the smaller the variance of the estimator

is. According to the property of the power iterations, applying more

power iterations on any vector x (i.e., x(𝑡+1) = 𝛼𝝈 + (1 − 𝛼)Px(𝑡))
will make the result converge towards 𝝅𝝈 . This motivates us to use

power iterations to reduce the variance of the estimator x̄, since
performing power iterations can make the estimator x̄ close to 𝝅𝝈 .
Note that a power iteration only requires a traversal of all edges

once which takes 𝑂 (𝑚) time. On real-life scale-free graphs, we

often have𝑂 (𝑚) = 𝑂 (𝑛 log𝑛), thus it is negligible compared to the

𝑂 (𝑛 log𝑛

𝜖2
) time complexity of Algorithm 3.

Warm up: using one power iteration. We first consider the

simple case that we apply only one power iteration to reduce the

variance of the estimator x̄. Recall that according to the definition

of the PageRank vector, 𝝅𝝈 satisfies the recursive formula: 𝝅𝝈 =

𝛼𝝈 + (1 − 𝛼)P𝝅𝝈 . Then, we have the following result.

𝑣! 𝑣" 𝑣#

𝑣$

(a) 𝐺

0.2
0.342857

0.228571

0.228571

𝑣! 𝑣" 𝑣#

𝑣$
𝜋! =

0.2
0.34
0.23
0.23

(b) Exact value of 𝝅1

0
1

0

0

𝑥̅

𝑣! 𝑣" 𝑣#

𝑣$

0.2
0

0.4

0.4

𝑥̅ !

𝑣! 𝑣" 𝑣#

𝑣$

0.2
0.3648

0.2176

0.2176

𝑥̅ $

𝑣! 𝑣" 𝑣#

𝑣$

(c) The estimation value of x̄, x̄⟨1⟩ and x̄⟨4⟩

Figure 2: A running example of the estimator x̄⟨𝐾 ⟩ . (a) An example
graph𝐺 ; (b) The exact value of the PPR vector𝝅1 (𝛼 = 0.2); (c) Suppose
that an 𝛼-random walk starts from 𝑣1 and stops at 𝑣2, the estimation
values of x̄, x̄⟨1⟩ and x̄⟨4⟩ are depicted. Compared to x̄, the estimation
values of x̄⟨1⟩ and x̄⟨4⟩ are closer to the exact value, which results in
smaller variances.

Algorithm 4: PW
Input: graph𝐺 , source distribution 𝝈 , decay factor 𝛼 , power iteration number 𝐾 , sample

size𝑇
Output: Estimated PageRank vector 𝝅̂𝝈

1 𝝅̂𝝈 ←MCW (𝐺 , 𝝈 , 𝛼 ,𝑇);

2 𝝅̂𝝈 ←
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾 P𝐾 𝝅̂𝝈 ;

3 return 𝝅̂𝝈 ;

Lemma 3.3. Let x̄ be an unbiased estimator of 𝝅𝝈 . Then, x̄⟨1⟩ =
𝛼𝝈 + (1 − 𝛼)Px̄ is also an unbiased estimator of 𝝅𝝈 .

Proof. By the linearity of expectation, we have𝐸 [x̄⟨1⟩] = 𝐸 [𝛼𝝈+
(1 − 𝛼)Px̄] = 𝛼𝝈 + (1 − 𝛼)P𝐸 [x̄] = 𝛼𝝈 + (1 − 𝛼)P𝝅𝝈 = 𝝅𝝈 . □

By Lemma 3.3, we can construct a new estimator x̄⟨1⟩ based on

the estimator x̄. Recall that to derive x̄, we need to add a mass of

1 on 𝑡 if an 𝛼-random walk stops at the node 𝑡 . To construct x̄⟨1⟩ ,
however, we add 𝛼 times the source distribution back to the cor-

responding nodes, and update 𝑡 ’s out-neighbors by adding
1−𝛼

𝑑𝑜𝑢𝑡 (𝑡)
on their estimations. In other words, the new estimator uniformly

distributes 1 − 𝛼 times of the probability mass to 𝑡 ’s out-neighbors.

This operation can reduce the variance of the estimator x̄. Fig. 2
shows a running example for x̄⟨1⟩ . To estimate the PPR vector 𝝅1 on

the example graph𝐺 (𝛼 = 0.2), when an 𝛼-random walk starts from

𝑣1 and stops at 𝑣2, the estimator x̄ adds 1 on the termination node

𝑣2. For comparison, x̄⟨1⟩ first adds the source node 𝑣1 by 𝛼 = 0.2,

then instead of adding amount on the termination node 𝑣2, it adds

(1 − 𝛼)/𝑑𝑜𝑢𝑡 (𝑣2) on the out-neighbors (𝑣3, 𝑣4) of the termination

node 𝑣2. The resulting estimation value of x̄⟨1⟩ is closer to the ex-

act value compared to x̄, which results in a smaller variance. The

following lemma shows that given an arbitrary unbiased estimator

x, applying one power iteration on it will obtain a new estimator

that has variance (1−𝛼)2 times smaller than the original estimator

x.

Lemma 3.4. Let x be an unbiased estimator of 𝝅𝝈 . Suppose x
satisfying ∥Px∥2

2
≤ ∥x∥2

2
. Let x⟨1⟩ = 𝛼𝝈 + (1 − 𝛼)Px. Then, we have

𝑉𝑎𝑟 [x⟨1⟩] ≤ (1 − 𝛼)2𝑉𝑎𝑟 [x].

Proof. Suppose x is an unbiased estimator, we have 𝐸 [x(𝑖)] =
𝝅𝝈 . According to the definition,𝑉𝑎𝑟 [x(𝑖)] = 𝐸 [(x(𝑖))2] −𝐸 [x(𝑖)]2.
𝐸 [(x(𝑖))2] = 𝐸 [(x(𝑖)) (x(𝑖))𝑇] = 𝐸 [(e𝑇

𝑖
x) (e𝑇

𝑖
x)𝑇] = 𝐸 [e𝑇

𝑖
xx𝑇 e𝑖].

Then,

∑
𝑖∈𝑉 𝐸 [(x(𝑖))2] = 𝑇𝑟 (xx𝑇) = ∥x∥22. Since ∥Px∥

2

2
≤ ∥x∥2

2
, we

have 𝑉𝑎𝑟 [x⟨1⟩] ≤ (1 − 𝛼)2𝑉𝑎𝑟 [x], which proves the Lemma. □

Efficient Personalized PageRank Computation: The Power of Variance-Reduced Monte Carlo Approaches SIGMOD ’23, June 03–05, 2022, Woodstock, NY

Reducing variance by 𝐾-power iterations. Given that applying

one power iteration can reduce variance, a natural idea is to extend

it by using 𝐾 power iterations to further reduce variance. First,

we prove that there is a similar invariant by iteratively applying

𝝅𝝈 = 𝛼𝝈 + (1−𝛼)P𝝅𝝈 for 𝐾 times. Then, a new unbiased estimator

can be derived by such an invariant formula.

Lemma 3.5. For any 𝐾 > 0, we have

𝝅𝝈 =

𝐾−1∑︁
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾𝝅𝝈 . (2)

Proof. By the definition of 𝝅𝝈 , it can be expanded as 𝝅𝝈 =∑∞
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈 . We have:

𝝅𝝈 =

∞∑︁
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈

=

𝐾−1∑︁
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈 +
∞∑︁
𝑘=𝐾

𝛼 (1 − 𝛼)𝑘P𝑘𝝈

=

𝐾−1∑︁
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾
∞∑︁
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈

=

𝐾−1∑︁
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾𝝅𝝈 .

□

Lemma 3.6. Suppose that an 𝛼-random walk starts from a node
𝑠 sampled from distribution 𝝈 and stops at 𝑡 . Then, for any 𝐾 > 0,
x̄⟨𝐾 ⟩ =

∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈+(1−𝛼)𝐾P𝐾e𝑡 is an unbiased estimator

of 𝝅𝝈 .

Proof. According to Lemma 3.1, 𝐸 [x̄] = 𝝅𝝈 . Following the

linearity of expectation, we can derive that

𝐸 [x̄⟨𝐾 ⟩] = 𝐸 [
𝐾−1∑︁
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾e𝑡]

=

𝐾−1∑︁
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾𝐸 [x̄]

=

𝐾−1∑︁
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾𝝅𝝈

= 𝝅𝝈 .

□

Furthermore, we can easily derive an upper bound of𝑉𝑎𝑟 [x̄⟨𝐾 ⟩]
by iteratively applying Lemma 3.4 for 𝐾 times.

Lemma 3.7. 𝑉𝑎𝑟 [x̄⟨𝐾 ⟩] ≤ (1 − 𝛼)2𝐾 (1 − ∥𝝅𝜎 ∥2
2
).

For example, in Fig. 2, by iteratively applying the power iteration

for four times, the resulting estimation value of x̄⟨4⟩ is much closer

to the exact PPR vector 𝝅𝝈 compared to x̄⟨1⟩ . This indicates that
the estimator x̄⟨4⟩ has a smaller variance compared to x̄⟨1⟩ .

Note that the first term in the right hand side of Eq. (2) can be seen

as an estimation of𝝅𝝈 . Andwe have ∥𝝅𝝈−
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 ∥1 =

(1 − 𝛼)𝐾 . Clearly, when 𝐾 becomes large, the 𝐿1-error of the first

term is very small. For x̄⟨𝐾 ⟩ , we only need to approximate the small

error part (the second term of Eq. (2)), since the first term can be

computed deterministically. For an 𝛼-random walk sample, we as-

sume that it stops at the node 𝑡 , then the estimator deterministically

propagates e𝑡 on the graph for 𝐾 steps to estimate the second term.

Clearly, if there are 𝑇 𝛼-random walk samples and 𝑇 is large, the

total time costs of this procedure may be high. A nice trick to tackle

this problem is that we can first sample 𝑇 𝛼-random walk samples,

and then deterministically propagate the values of the 𝛼-random

walk estimator on the graph for 𝐾 steps (i.e., performing 𝐾 power

iterations). By the linearity of the PPR vector, it can be shown that

such a procedure can exactly obtain the same estimator as that

based on x̄⟨𝑘 ⟩ .

Lemma 3.8. Let 𝝅̂𝝈1 be the estimation vector obtained by apply-
ing x̄ for 𝑇 times and take the average, and then applying 𝐾-power
iterations on the results. Let 𝝅̂𝝈2 be the estimation vector obtained
by applying x̄⟨𝐾 ⟩ for 𝑇 times and take the average. Then, we have
𝝅̂𝝈1 = 𝝅̂𝝈2.

Proof. Suppose that the 𝑖-th 𝛼-random walk stops at 𝑡𝑖 . After

obtaining 𝑇 random walk samples, we have 𝝅̂𝝈 =
∑𝑇
𝑖=1

e𝑡𝑖
𝑇
. Then,

𝝅̂𝝈1 =
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾 (∑𝑇𝑖=1

e𝑡𝑖
𝑇
). On the other

hand, if we use x̄⟨𝐾 ⟩ as an estimator, for the 𝑖-th randomwalk, the al-

gorithmwill add z𝑖 =
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘 𝝈

𝑇
+(1−𝛼)𝐾P𝐾 e𝑡𝑖

𝑇
. As a re-

sult, 𝝅̂𝝈2 =
∑𝑇
𝑖=1

z𝑖 =
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 +∑𝑇𝑖=1

(1−𝛼)𝐾P𝐾 e𝑡𝑖
𝑇

=∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾 (∑𝑇𝑖=1

e𝑡𝑖
𝑇
) = 𝝅̂𝝈1. □

A Monte Carlo algorithm PW based on the estimator x̄⟨𝐾 ⟩ is
outlined in Algorithm 4. The algorithm follows a "first walk, and

then propagate" framework. Note that this framework is fundamen-

tally different from the state-of-the-art bidirectional approaches

[31, 42, 45] which are based on the "first propagate, and then walk"

framework. Specifically, Algorithm 4 first simulates 𝑇 𝛼-random

walks to derive an estimation 𝝅̂𝝈 of 𝝅𝝈 (Line 1). Then, 𝐾 power

iterations are applied on 𝝅̂𝝈 to construct the final estimator. Since

each power iteration takes 𝑂 (𝑚) time, the time complexity of PW
can be easily derived.

Lemma 3.9. The time complexity of Algorithm 4 is 𝑂 (𝑇𝛼 + 𝐾𝑚).

Note that PW is extremely simple. However, the performance of

PW is competitive with the state-of-the-art bidirectional algorithms

as shown in our experiments. We can utilize the following Chernoff

inequality to bound the sample size of Algorithm 4 to guarantee an

(𝜖, 𝛿)-error.
Lemma 3.10. (Chernoff bound) Let 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑛𝑟) be inde-

pendent random variables satisfying 𝑋𝑖 ≤ 𝑀 for 1 ≤ 𝑖 ≤ 𝑇 . Let
𝑋 = 1

𝑇

∑
𝑖=1

𝑋𝑖 . Assume that 𝐸 [𝑋] be the expectation of 𝑋 , ∥𝑋 ∥2 =
1

𝑇

∑𝑇
𝑖=1

𝐸 [𝑋 2

𝑖
]. Then we have

Pr(|𝑋 − 𝐸 [𝑋] | ≥ 𝜆) ≤ 𝑒𝑥𝑝 (− 𝜆2𝑇

2(∥𝑋 ∥2 +𝑀𝜆/3)
).

Lemma 3.11. Let 𝑊 =
(2𝜖/3+2) log(2/𝑝𝑓)

𝜖2 ·𝜇 . For any node 𝑡 with

𝝅𝝈 (𝑡) > 𝜇, when 𝐾 > 𝑙𝑜𝑔1−𝛼 𝜇 and 𝑇 > (1 − 𝛼)𝐾𝑊 , Algorithm 4
returns an approximate PPR value 𝝅̂𝝈 (𝑡) satisfying |𝝅̂𝝈 (𝑡)−𝝅𝝈 (𝑡) | ≤
𝜖𝝅𝝈 (𝑡) with probability at least 1 − 𝑝 𝑓 .

Proof. Let𝑋 be the random variable that represents the amount

added on node 𝑡 in each 𝛼-random walk sample (the second term

of estimator x̄⟨𝐾 ⟩). Suppose that the random walk stops at node

𝑡 ′. Let 𝑋 = (1 − 𝛼)𝐾P𝐾e𝑡 ′ (𝑡). Then, we have 𝑋 ≤ (1 − 𝛼)𝐾 . Given

SIGMOD ’23, June 03–05, 2022, Woodstock, NY

that 1 − 𝛼 < 1, for any 𝑖 , we have 𝑋𝑖 ≤ (1 − 𝛼)𝐾 . Thus, we have
∥𝑋 ∥2 ≤ ((1−𝛼)𝐾)2 < (1−𝛼)𝐾 𝜇 < (1−𝛼)𝐾 𝝅̂𝝈 (𝑡). By substituting
𝑀 = (1 − 𝛼)𝐾 in Lemma 3.10, we have

Pr(|𝑋 − 𝐸 [𝑋] | ≥ 𝜆) ≤ 𝑒𝑥𝑝 (− 𝜆2𝑇

2(1 − 𝛼)𝐾 (𝝅𝝈 (𝑡) + 𝜆/3)
) .

Let 𝜆 = 𝜖𝝅𝝈 (𝑡). Then, by 𝝅̂𝝈 (𝑡) − 𝝅𝝈 (𝑡) = 𝑋 − 𝐸 [𝑋], we have

Pr(|𝝅̂𝝈 (𝑡)−𝝅𝝈 (𝑡) | ≥ 𝜖𝝅𝝈 (𝑡)) ≤ 𝑒𝑥𝑝 (−
𝜖2 ·𝑇 · 𝝅𝝈 (𝑡)

(1 − 𝛼)𝐾 (2 + 2𝜖/3)
) ≤ 𝑝 𝑓 .

The last inequality follows by substituting 𝑇 > (1 − 𝛼)𝐾𝑊 and

𝝅𝝈 (𝑡) > 𝜇. □

The analysis of Lemma 3.9 and Lemma 3.11 is general. For ex-

ample, if the graph has 𝑚 = 𝑂 (𝑛
3

2) edges, the time complexity

of PW is O(
𝑇
𝛼 + 𝐾𝑛

3

2). In practice, real-life scale-free graphs with

𝑚 = 𝑂 (𝑛 log𝑛) is of special interest. Since most previous studies

[42, 45] consider scale-free graphs, we also focus on such graphs for

a fair comparison. Also, we set 𝑝 𝑓 = 1

𝑛 , 𝜇 =
1

𝑛 to ensure a relatively-

accurate estimation result. This parameter setting is also widely

adopted in previous work [42, 45]. With these parameter setting,

we can easily derive the following Corollary from Lemma 3.11.

Corollary 1. Suppose that𝑚 = 𝑂 (𝑛 log𝑛), 𝑝 𝑓 = 1

𝑛 , 𝜇 = 1

𝑛 , Al-

gorithm 4 can achieve an (
√︃
𝑛 log𝑛 (1−𝛼)𝐾

𝑇
, 1

𝑛)-error with probability
larger than 1 − 1

𝑛 .

Proof. According to Lemma 3.11,𝑊 = 𝑂 (𝑛 log𝑛

𝜖2
), by setting

𝜖 =

√︃
𝑛 log𝑛 (1−𝛼)𝐾

𝑇
, 𝑇 and 𝐾 satisfy 𝑇 = (1 − 𝛼)𝐾𝑊 , thus the

algorithm can satisfy an (𝜖, 𝜇)-error. □

According to Corollary 1, we can vary 𝑇 and 𝐾 ; as long as

𝜖 =

√︃
𝑛 log𝑛 (1−𝛼)𝐾

𝑇
is a constant, the same error guarantee holds.

The time complexity is𝑂 (𝑇𝛼 +𝐾𝑚) = 𝑂 ((
(1−𝛼)𝐾
𝛼𝜖2

+𝐾)𝑛 log𝑛), which
is minimized when 𝐾 = log

1−𝛼
𝛼

𝑙𝑛 1

1−𝛼
𝜖2 = 𝑂 (log

1−𝛼 𝜖
2). In this

case,𝑇 = 𝑂 (𝑛 log𝑛), the overall time complextiy is𝑂 (𝑛 log𝑛 log
1

𝜖).
For example, when 𝛼 = 0.2, suppose that we set 𝑇 = 𝑛 log𝑛, 𝐾 ≈ 6,

then we can guarantee a relative error 𝜖 = 0.5 with probability

1 − 1

𝑛 . Moreover, from an engineering point of view, we can bal-

ance the running time of random walks and power iterations to

achieve a better empirical performance. Similar balance strategy

was also adopted in previous work [42, 45]. For example, if we

have set 𝑇 = 𝑛 log𝑛, 𝐾 = log
1−𝛼 𝜖

2
according to the theoretical

analysis. However, in practice, the running time of simulating ran-

dom walks may be longer than running power iterations with this

parameter setting. Then, we can adaptively reset 𝑇 as
𝑛 log𝑛

10
and

𝐾 = log
1−𝛼

𝜖2

10
. According to Corollary 1, the same error guarantee

still holds, while the empirical running time of the algorithm to

achieve the same relative error 𝜖 can be reduced.

The 𝑂 (𝑛 log𝑛 log
1

𝜖) time complexity of PW achieves the best

time complexity as the state-of-the-art SpeedPPR algorithm for

approximating single-source personalized PageRank query [45]. To

our knowledge, only our algorithms and SpeedPPR can achieve the

𝑂 (log
1

𝜖) complexity. When 𝛼 becomes smaller, the time of random

walk phase grows with𝑂 (1

𝛼), which is also the same as SpeedPPR.
However, in their implementations, the SpeedPPR algorithm in-

volves a very complicated procedure which combines forward push,

power iterations and 𝛼-random walks. Specifically, it first invokes

local push, and uses a queue to maintain active nodes; when the

size of the queue exceeds a threshold, it turns into sequential scan

(power iteration), and uses dynamic threshold to decide a node to

push. The queue threshold and the dynamic threshold need care-

fully design. Their implementation is also highly optimized with

some smart data structures. For comparison, our algorithm is ex-

tremely simple, we only need to simulate a number of 𝛼-random

walks, and then conduct a few basic power iterations on the ob-

tained estimation. The implementation code is within 20 lines. As

indicated in our experiments, the performance of PW is better than

SpeedPPR with the same relative error guarantee (see Fig. 8).

3.3 Variance Reduction Using Former Samples
Since applying one power iteration can reduce the variance of an es-

timator by a factor of (1−𝛼)2, it is efficient when 𝛼 is relatively large

(e.g., 𝛼 = 0.2). However, when 𝛼 is relatively small (e.g., 𝛼 = 0.01),

it may require a number of power iterations to achieve a significant

variance reduction. To tackle this problem, we propose a novel

technique to further reduce the variance by using the historical

information of the former samples.

The traditional 𝛼-random walk sampling algorithm does not

consider the historical information of former samples. That is, we

do the same thing when we draw the 1-st sample as when we draw

the 1000-th sample. A question is that, can we utilize the former

samples to reduce the variance of the estimator? First, we show

that a similar invariant equation as Eq. (1) in forward search also

holds for any estimated vector 𝝅̂𝝈 .

Lemma 3.12. Suppose that 𝝅̂𝝈 is an estimated PageRank vector,
and r̂ is the corresponding residual vector, where r̂ = 𝝈 + 1−𝛼

𝛼 P𝝅̂𝝈 −
1

𝛼 𝝅̂𝝈 . Then, for all 𝑡 ∈ 𝑉 , 𝝅̂𝝈 (𝑡) satisfies the following equation:

𝝅𝝈 (𝑡) = 𝝅̂𝝈 (𝑡) +
∑︁
𝑢∈𝑉

r̂(𝑢)𝝅𝑢 (𝑡). (3)

Proof. By the definition of PageRank vector 𝝅𝝈 , 𝝅𝝈 = 𝛼𝝈 +
(1 − 𝛼)𝑃𝝅𝝈 . Let A𝛼 = I − (1 − 𝛼)P, 𝝅𝝈 be the solution of the linear

system A𝛼x = 𝛼𝝈 . Let 𝚷 = (1

𝛼 (I − (1 − 𝛼)P))
−1 = 𝛼A−1

𝛼 , we have

𝝅𝑠 = 𝚷𝝈 . The 𝑡, 𝑠-th element (the 𝑡-th row, 𝑠-th column element) of

𝚷 equals 𝝅𝑠 (𝑡). Suppose 𝝅̂𝝈 is an estimated PageRank vector, since

we define the residual vector r̂ as r̂ = 𝝈 + 1−𝛼
𝛼 P𝝅̂𝝈 − 1

𝛼 𝝅̂𝝈 = 𝝈 −
1

𝛼 (I− (1−𝛼)P)𝝅̂𝝈 = 𝝈 − 1

𝛼 A𝛼 𝝅̂𝝈 , we directly have 𝝈 = 1

𝛼 A𝛼 𝝅̂𝝈 + r̂.
Multiplied both sides by 𝚷, we have 𝝅𝝈 = 𝝅̂𝝈 + 𝚷r̂. By expanding

the matrix multiplication, we can obtain Eq. (3) for all 𝑡 ∈ 𝑉 . □

Note that a key difference between Eq. (1) and Eq. (3) is that the

residual values in Eq. (3) can be either positive or negative. Given

an estimated PageRank vector 𝝅̂𝝈 , computing the corresponding

residual vector is not hard (the time cost is the same as that of

performing one power iteration, i.e., 𝑂 (𝑚)). Based on such an in-

variant formula, we can build a novel estimator conditioned on the

residual vector. Given a vector 𝝅̂𝝈 as the current estimation, let ê
denote the error vector which is defined as ê = 𝝅𝝈 − 𝝅̂𝝈 . Accord-
ing to Lemma 3.12, ê = 𝚷r̂ is a linear combination of the residual

vector, where the linear coefficient is the personalized PageRank

values. Let |r̂| be a vector where each element |r̂| (𝑢) = |r̂(𝑢) | (the
absolute value). Note that 𝚷r̂ can be estimated using 𝛼-random

walk sampling with a source distribution
| r̂ |
∥ r̂∥1 . Thus, the error vec-

tor ê can also be estimated by such an 𝛼-random walk sampling

procedure. We also define the operator 𝑠𝑔𝑛(𝑥) as the sign operator

which equals 1 when 𝑥 > 0 and equals −1 when 𝑥 ≤ 0. Formally,

we have the following results.

Efficient Personalized PageRank Computation: The Power of Variance-Reduced Monte Carlo Approaches SIGMOD ’23, June 03–05, 2022, Woodstock, NY

𝑟̂ =

0
0.02
−0.01
−0.01

𝑣!	 𝑣" 𝑣#

𝑣$

0.2
0.34

0.23

0.23

𝜋.!

𝜋! 𝑢 = 𝜋.! 𝑢 + 0.04(
1
2𝜋" 𝑢 +

1
4𝜋# 𝑢 +

1
4𝜋$ 𝑢)

𝜋.! =

0.2
0.34
0.23
0.23

(a) Estimation 𝝅̂1 and the residual vector 𝒓̂

𝑣!	 𝑣" 𝑣#

𝑣$

0.2
0.34

0.23

0.23

𝑥̅%&!

𝑣!	 𝑣" 𝑣#

𝑣$

0
0

0

−0.04

+

(b) x̄𝝅̂
1

Figure 3: A running example of the estimator x̄𝝅𝝈 on𝐺 . (a) Given
a current estimation 𝝅̂1 = [0.2, 0.34, 0.23, 0.23]𝑇 , the corresponding
residual vector 𝒓̂ is [0, 0.02, −0.01, −0.01]𝑇 . The invariant 𝝅1 (𝑢) =

𝝅̂1 (𝑢) + 0.04(1

2
𝝅2 (𝑢) − 1

4
𝝅3 (𝑢) − 1

4
𝝅4 (𝑢)) holds for𝑢 = 𝑣1, 𝑣2, 𝑣3, 𝑣4; (b)

x̄𝝅𝝈 selects 𝑣2, 𝑣3 and 𝑣4 with probability 1

2
, 1

4
, 1

4
to start 𝛼-random

walks respectively. Suppose that 𝑣2 is chosen, the 𝛼-random walk
starts from 𝑣2 and stops at 𝑣4, the estimation value of x̄𝝅̂1

is depicted.

Lemma 3.13. Denote by 𝝅̂𝝈 an estimated PageRank vector, r̂ = 𝝈 +
1−𝛼
𝛼 P𝝅̂𝝈 − 1

𝛼 𝝅̂𝝈 is the corresponding residual vector. Suppose that we

sample a source node 𝑠′ from the distribution | r̂ |
∥ r̂∥1 , and an 𝛼-random

walk starts from 𝑠′ and stops at 𝑡 . Then, x̄𝝅̂𝝈
= 𝝅̂𝝈 +𝑠𝑔𝑛(r̂(𝑠′))∥r̂∥1e𝑡

is an unbiased estimator of 𝝅𝝈 .

Proof. Let x̃𝑠′ denote the random vector that if an 𝛼-random

walk starts from 𝑠′ and stops at a node 𝑡 , i.e., x̃𝑠′ = 𝑠𝑔𝑛(r̂(𝑠′))e𝑡 .
We have 𝐸 [x̃𝑠′] = 𝑠𝑔𝑛(r̂(𝑠′))𝝅𝑠′ . By the linearity of expectation, we
can derive that 𝐸 [x̃] = 𝝅̂𝝈 +

∑
𝑢∈𝑉 𝑃𝑟 [𝑠′ = 𝑢] ∥r̂∥1𝐸 [x̃𝑢] = 𝝅̂𝝈 +

∥r̂∥1𝚷(𝑠𝑔𝑛(r̂(𝑢)) | r̂ |∥ r̂∥1) = 𝝅̂𝝈 + 𝚷r̂ = 𝝅𝝈 . □

Fig. 3 shows a running example of x̄𝝅̂𝝈
on the example graph

𝐺 in Fig. 2. Suppose that we have obtained a current estimation

𝝅̂1 = [0.2, 0.34, 0.23, 0.23]𝑇 , which is already near to the exact

value of 𝝅1. We can compute the corresponding residual vector

𝒓 = [0, 0.02,−0.01,−0.01]𝑇 . Then, the invariant 𝝅1 (𝑢) = 𝝅̂1 (𝑢) +
0.04(1

2
𝝅2 (𝑢) − 1

4
𝝅3 (𝑢) − 1

4
𝝅4 (𝑢)) holds for 𝑢 = 𝑣1, 𝑣2, 𝑣3, 𝑣4. x̄𝝅1

first selects 𝑣2, 𝑣3 and 𝑣4 with probability
1

2
,

1

4
,

1

4
respectively, then

starts 𝛼-random walks from the selected node. Suppose that 𝑣2

is chosen and the 𝛼-random walk starts from 𝑣2 and stops at 𝑣4.

Then, the estimation value x̄𝝅1
= 𝝅̂1 + [0, 0, 0,−∥𝒓 ∥1]𝑇 (∥𝒓 ∥1 =

0.04). Since 𝝅̂1 is already close to the exact value, ∥𝒓 ∥1 can be very

small, which results in a small variance. The novel estimator x̄𝝅̂𝝈

inspires us to design a new algorithm for estimating 𝝅𝝈 . We can first

simulate some burn-up random walks to obtain a PPR estimation

𝝅̂𝝈 . Then, we compute the corresponding residual vector r̂, and
run more random walks by sampling nodes from the normalized

residual distribution and starts 𝛼-random walks from those nodes.

Intuitively, if the estimated PageRank 𝝅̂𝝈 is close to 𝝅𝝈 , the norm
of the correspond residual vector r̂ will be small, which results in a

new estimator with a smaller variance. Formally, we have

Lemma 3.14. Let 𝝅̂𝝈 be a PPR estimation, r̂ be its corresponding
residual vector, then 𝑉𝑎𝑟 [x̄𝝅̂𝝈

] = ∥r̂∥2
1
(1 − ∥𝚷 r̂

∥ r̂∥1 ∥2).

Proof. Let ẽ be a random vector ẽ = x̃ − 𝝅̂𝝈 . Then, we have
𝐸 [ẽ] = 𝐸 [x̃] − 𝝅̂𝝈 = 𝚷r̂. Suppose that we sample a source node 𝑠′

from the distribution
| r̂ |
∥ r̂∥1 , and an 𝛼-random walk starts from 𝑠′

and stops at 𝑡 . Then, ẽ = 𝑠𝑔𝑛(r̂(𝑠′))∥r̂∥1e𝑡 . Let z = 𝚷
| r̂ |
∥ r̂∥1 , where

z(𝑡) is a random variable that equals 1 if the random walk stops

at the node 𝑡 , and equals 0 otherwise. Then, we have 𝐸 [(z(𝑡))2] =
𝐸 [z(𝑡)] = (𝚷 | r̂ |

∥ r̂∥1) (𝑡), 𝐸 [(ẽ(𝑡))
2] = 𝐸 [|ẽ(𝑡) |2] = ∥r̂∥2

1
𝐸 [|z̃(𝑡) |2] =

∥r̂∥1 (𝚷 |r̂|) (𝑡). And we have the following result: 𝑉𝑎𝑟 [x̃(𝑢)] =

𝑉𝑎𝑟 [ẽ(𝑢)] = 𝐸 [(ẽ(𝑢))2] − 𝐸 [ẽ(𝑢)]2. Thus, 𝑉𝑎𝑟 [x̃] = ∑
𝑢∈𝑉 x̃(𝑢) =

Algorithm 5: PPW
Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , power iteration number 𝐾 ,

sample size𝑇 , batch size 𝐵
Output: The estimated PageRank vector 𝝅̂𝝈

1 𝝅̂𝝈 ← 0, r← 𝝈 ;

2 for 𝑖 = 1 : 𝐵 do
3 r̂← 𝝈 + 1−𝛼

𝛼 𝑃 𝝅̂𝝈 − 1

𝛼 𝝅̂𝝈 ;

4 for 𝑖 = 1 : ⌈𝑇 /𝐵⌉ do
5 Sample a node 𝑠′ from probability distribution

|r̂|
∥r̂∥

1

;

6 Run an 𝛼-random walk from 𝑠′ ; suppose that it stops at𝑢;

7 𝝅̂𝝈 (𝑢) ← 𝝅̂𝝈 (𝑢) + 𝑠𝑔𝑛 (r̂(𝑠′))
∥r̂∥

1

⌈𝑇 /𝐵⌉ ;

8 𝝅̂𝝈 ←
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾 P𝐾 𝝅̂𝝈 ;

9 return 𝝅̂𝝈 ;

∑
𝑢∈𝑉 𝐸 [(ẽ(𝑢))2] −

∑
𝑢∈𝑉 𝐸 [ẽ(𝑢)]2 = ∥r̂∥1®1𝑇𝚷 |r̂| − (𝚷r̂)𝑇 (𝚷r̂) =

∥r̂∥2
1
− ∥𝚷r̂∥2

2
= ∥r̂∥2

1
(1 − ∥𝚷 r̂

∥ r̂∥1 ∥
2

2
) ≥ 0. □

Corollary 2. Let 𝚷 denote the personalized PageRank matrix.
Let 𝝅̂𝝈1, 𝝅̂𝝈2 be two PPR estimations with the corresponding residual
vector r̂1, r̂2. If ∥r̂1∥2

1
(1 − ∥𝚷 r̂1

∥ r̂1 ∥1 ∥
2

2
) ≤ ∥r̂2∥2

1
(1 − ∥𝚷 r̂2

∥ r̂2 ∥1 ∥
2

2
),

then 𝑉𝑎𝑟 [x̄𝝅̂𝝈1] ≤ 𝑉𝑎𝑟 [x̄𝝅̂𝝈2]. Specifically, compared to the basic 𝛼-
random walk sampling estimator x̄ where the corresponding residual
vector is 𝝈 , x̄𝝅̂𝝈

is an estimator defined above with residual vector r.
If ∥r̂∥2

1
(1 − ∥𝚷 r̂

∥ r̂∥1 ∥
2

2
) ≤ 1 − ∥𝝅𝝈 ∥2

2
, then 𝑉𝑎𝑟 [x̄𝝅̂𝝈

] ≤ 𝑉𝑎𝑟 [x̄].

Corollary 2 gives the condition when the variance is reduced:

the 1-norm of the residual vector (the sum of all the absolute val-

ues of the residuals) is reduced. Based on this, we can develop a

progressive 𝛼-random walk sampling algorithm to implement such

a historical-information-aided variance reduction technique. More-

over, we show that such a progressive 𝛼-random walk sampling

technique can be easily integrated with our power-iteration tech-

nique developed in Section 3.2 to further reduce the variance of the

estimator.

The resulting algorithm PPW is outlined in Algorithm 5. The

𝛼-random walk samples are divided into several batches and an

additional parameter 𝐵 is used to control the batch size. In each

batch, we first compute the residual vector r̂ corresponding to the

current estimation (Line 3), then we adapt the source distribution

to
| r̂ |
∥ r̂∥1 , and start 𝛼-random walks from nodes sampled from such a

distribution (Line 4-7). After that, we perform 𝐾 power iterations to

reduce the variance of the estimator obtained in each batch (Line 8).

Note that when the batch size as well as the sample size is set

properly, every adaption to the source distribution is expected to

reduce the variance. Together with the power iteration technique,

we can often obtain a very good estimator for the PPR vector as

shown in our experiments.

Lemma 3.15. The time complexity of Algorithm 5 is 𝑂 (𝑇𝛼 + 𝐾𝑚 +
𝐵𝑚). In practice, 𝐵 is often treated as a small constant, thus it can be
simplified as 𝑂 (𝑇𝛼 + 𝐾𝑚).

Proof. For a PPR estimation 𝝅̂𝝈 , in order to compute a corre-

sponding residual vector r̂, it only requires propagating fractions

to its neighbors and adding the source distribution and subtracting

itself, which takes𝑂 (𝑚) time. So in each batch, PPW only requires

an 𝑂 (𝑚) additional cost, there are 𝐵 batches in total, which takes

𝑂 (𝐵𝑚). To implement theweighted sampling process, we can utilize

the alias sampling technique [36]. The time complexity of building

alias table is bounded by 𝑂 (𝑛). After that, it only takes 𝑂 (1) time

to draw a sample from a weighted distribution
| r̂ |
∥ r̂∥1 . So, the total

SIGMOD ’23, June 03–05, 2022, Woodstock, NY

running time of PPW is 𝑂 (𝑇𝛼 + 𝐾𝑚 + 𝐵𝑚). In practice, 𝐵 is often

treated as a small constant. As a result, PPW shares the same time

complexity with that of PW. □

Lemma 3.16. Suppose that ∥𝒓 ∥1 < 1 in the last batch, Algorithm 5
can achieve an (𝜖, 1

𝑛)-error with probability higher than 1− 1

𝑛 in time
𝑂 (𝐵 ·𝑛 log𝑛 log

1

𝜖). In practice, 𝐵 is often treated as a small constant,
thus it can be simplified as 𝑂 (𝑛 log𝑛 log

1

𝜖).

Proof. Let𝑋 ′ be the randomvariable that represents the amount

on 𝑡 in each 𝛼-random walk sample. Since ∥𝑟 ∥1 < 1 in the last batch

in Algorithm 5, we can prove that 𝑋 ′ = ∥𝒓 ∥1 (1 − 𝛼)𝐾P𝐾e𝑡 ′ (𝑡) <
(1 − 𝛼)𝐾P𝐾e𝑡 ′ (𝑡). Following the proofs of Lemma 3.11 and Corol-

lary 1, we can also prove that Algorithm 5 can achieve an (𝜖, 𝛿)-error
in the last batch. The overall running time of the whole algorithm

is 𝑂 (𝐵 · 𝑛𝑙𝑜𝑔𝑛𝑙𝑜𝑔 1

𝜖). In practice, 𝐵 is often set as a small constant,

it can be simplified as 𝑂 (𝑛𝑙𝑜𝑔𝑛𝑙𝑜𝑔 1

𝜖). □

Lemma 3.16 shows that by properly setting the number of batches

𝐵 (usually a small constant such as 𝐵 = 3 in practice), the variance

of PPW is lower than PW and the same error and time complexity

can also be guaranteed as PW (by a similar analysis of Lemma 3.11).

Although PPW has the same complexity as SpeedPPR, PPW is

easier to implement and also much more accurate than SpeedPPR,
as shown in our experiments. Moreover, PPW is based on two

totally new and powerful ideas (“first walk, then propagate” and

“progressively sampling”) which could be of independent interests.

4 NEW SPANNING FORESTS ESTIMATORS
When 𝛼 is small, the expected length of the 𝛼-random walk can

be very long, rendering the time cost for drawing a sample very

high. To address this problem, Liao et al. [27] developed a span-

ning forests (SF) sampling technique which was shown to be less

sensitive to the parameter 𝛼 . However, in [27], the variance of the

SF based estimators did not analyzed. To fill this gap, we first the-

oretically analyze the variance of the SF based estimators. Then,

we propose two novel techniques to reduce the variances of the SF

based estimators.

4.1 Variance Analysis of SF Based Estimators
First, we show that the SF based estimators developed for single-

source PPR query [27] (Lemma 2.3 and Lemma 2.4) can be easily

extended for any source distribution 𝝈 . Let 𝐹 ∈ F be a random

rooted spanning forest and 𝜌 (𝐹) be the root set of 𝐹 . Suppose that 𝐹
is sampled with probability 𝑃 (𝐹) ∝∏

𝑢∈𝜌 (𝐹)
𝛼

1−𝛼 𝑑𝑜𝑢𝑡 (𝑢). Denote
by𝑉𝜌 [𝑡] the connected component that 𝑡 belongs to. Then, we have

the following results.

Lemma 4.1. Let x̃ be a vector of random variables that is defined as
x̃ =

∑
𝑡 ∈𝜌 (𝐹)

∑
𝑢∈𝑉𝜌 [𝑡] 𝝈 (𝑢)e𝑡 . Then, x̃ is an unbiased estimator of

𝝅𝝈 , i.e., 𝐸 [x̃] = 𝝅𝝈 . When the graph is undirected, we further define
a vector of random variables ¤x as

¤x =
∑︁
𝑢∈𝑉

∑
𝑣∈𝑉𝜌 [𝑢] 𝝈 (𝑣)∑
𝑣∈𝑉𝜌 [𝑢] 𝑑 (𝑣)

𝑑 (𝑢)e𝑢 .

Then, ¤x is also an unbiased estimator of 𝝅𝝈 , i.e., 𝐸 [¤x] = 𝝅𝝈 .

Proof. By the linearity of expectation, since𝝅𝝈 =
∑
𝑢∈𝑉 𝝈 (𝑢)𝝅𝑢 ,

𝐸 [x̃] = ∑
𝑢∈𝑉 𝝈 (𝑢)𝝅𝑢 = 𝝅𝝈 , 𝐸 [¤x] =

∑
𝑢∈𝑉 𝝈 (𝑢)𝝅𝑢 = 𝝅𝝈 . □

As indicated in [27], the estimator ¤x has a smaller variance com-

pared to ¤x. Below, we derive the variances of these two estimators

([27] did not explicitly give the variances of these two estimators).

Lemma 4.2. Let Q denote the co-occurrence probability matrix
where (Q)𝑖𝑖 = 1 for each node 𝑖 ∈ 𝑉 , and (Q)𝑖 𝑗 equals the probability
that 𝑖 and 𝑗 have the same root in a rooted spanning forest 𝐹 sampled
with probability 𝑃 (𝐹) ∝∏

𝑢∈𝜌 (𝐹)
𝛼

1−𝛼 𝑑𝑜𝑢𝑡 (𝑢). Then, we have

𝑉𝑎𝑟 [x̃] = 𝝈𝑇Q𝝈 − ∥𝝅𝝈 ∥22 .

Proof. Suppose that we have sampled a rooted spanning forest

with probability 𝑃 (𝐹) ∝∏
𝑢∈𝜌 (𝐹)

𝛼
1−𝛼 𝑑𝑜𝑢𝑡 (𝑢). Given a specific 𝐹 ,

each node is rooted in one node. If a node 𝑖 is rooted in 𝑗 , we say

𝜌 [𝑖] = 𝑗 . Let S denote the matrix that (S)𝑖 𝑗 = 1 if 𝑗 is rooted in 𝑖 ,

i.e. 𝜌 [𝑗] = 𝑖 , (S)𝑖 𝑗 = 0 otherwise. Then S can be written as:

S = [e𝜌 [1] , e𝜌 [2] , · · · , e𝜌 [𝑛]] .
According to this definition, we have x̃ = S𝝈 . To derive the vari-

ance, we need to compute 𝐸 [(x̃(𝑢))2] = 𝐸 [(e𝑇𝑢 S𝝈)𝑇 (e𝑇𝑢 S𝝈)] =

𝐸 [𝝈𝑇 S𝑇 e𝑢e𝑇𝑢 S𝝈] for each node 𝑢. Also, 𝐸 [x̃(𝑢)]2 = (𝝅𝝈 (𝑢))2.
𝑉𝑎𝑟 [x̃] = ∑

𝑢∈𝑉 𝑉𝑎𝑟 [x̃(𝑢)] =
∑
𝑢∈𝑉 𝐸 [(x̃(𝑢))2]−

∑
𝑢∈𝑉 𝐸 [x̃(𝑢)]2 =

𝐸 [𝝈𝑇 S𝑇 S𝝈] − ∥𝝅𝝈 ∥2
2
= 𝝈𝑇 𝐸 [S𝑇 S]𝝈 − ∥𝝅𝝈 ∥2

2
. It remains to analyze

𝐸 [S𝑇 S]. Note that (S𝑇 S)𝑖 𝑗 = e𝑇
𝜌 [𝑖]e𝜌 [𝑗] , and S𝑇 S can be seen as a

"co-root" matrix. That is, (S𝑇 S)𝑖 𝑗 = 1 if 𝑖 and 𝑗 has the same root, 0

otherwise. Thus, 𝐸 [S𝑇 S] = Q, the lemma follows. □

If the underlying graph is undirected, by a similar analysis, we

can derive an upper bound of the variance of ¤x. Specifically, let
(𝑞𝑑)𝑖 𝑗 be a random variable defined as: if node 𝑖 and node 𝑗 be-

long to the same connected component of a random spanning

forest 𝐹 sampled with probability 𝑃 (𝐹) ∝∏
𝑢∈𝜌 (𝐹)

𝛼
1−𝛼 𝑑 (𝑢), then

(𝑞𝑑)𝑖 𝑗 =
∑
𝑢∈𝑉𝜌 [𝑖] (𝑑 (𝑢))

2

(∑𝑢∈𝑉𝜌 [𝑖] 𝑑 (𝑢))2 , and (𝑞𝑑)𝑖 𝑗 = 0 otherwise. Then, we have

the following result.

Lemma 4.3. Let Q𝑑 be a matrix where (Q𝑑)𝑖 𝑗 is the expectation
of the random variable (𝑞𝑑)𝑖 𝑗 . Then, we have 𝑉𝑎𝑟 [¤x] = 𝝈𝑇Q𝑑𝝈 −
∥𝝅𝝈 ∥2

2
, and 𝑉𝑎𝑟 [¤x] < 𝑉𝑎𝑟 [x̃].

Proof. Let 𝐹 be a rooted spanning forest sampled with prob-

ability 𝑃 (𝐹) ∝ ∏
𝑢∈𝜌 (𝐹)

𝛼
1−𝛼 𝑑 (𝑢). If node 𝑖 is rooted in 𝑗 , we say

𝜌 [𝑖] = 𝑗 . Let S̃ be the matrix that (S̃)𝑖 𝑗 = 𝑑 (𝑖)∑
𝑢∈𝑉𝜌 [𝑖] 𝑑 (𝑢)

if 𝑖 and 𝑗

are in the same connected component, and (S̃)𝑖 𝑗 = 0 otherwise.

Clearly, by this definition, we have ¤x = S̃𝝈 . To derive the variance

𝑉𝑎𝑟 [¤x], we need to compute 𝐸 [(¤x(𝑢))2] = 𝐸 [(e𝑇𝑢 S̃𝝈)𝑇 (e𝑇𝑢 S̃𝝈)] =
𝐸 [𝝈𝑇 S̃𝑇 e𝑢e𝑇𝑢 S̃𝝈] for each node𝑢. Also, we have𝐸 [¤x(𝑢)]2 = (𝝅𝝈 (𝑢))2.
𝑉𝑎𝑟 [¤x] = ∑

𝑢∈𝑉 𝑉𝑎𝑟 [¤x(𝑢)] =
∑
𝑢∈𝑉 𝐸 [(¤x(𝑢))2]−

∑
𝑢∈𝑉 𝐸 [¤x(𝑢)]2 =

𝐸 [𝝈𝑇 S̃𝑇 S̃𝝈] − ∥𝝅𝝈 ∥2
2
= 𝝈𝑇 𝐸 [S̃𝑇 S̃]𝝈 − ∥𝝅𝝈 ∥2

2
. It remains to ana-

lyze 𝐸 [S̃𝑇 S̃]. Note that (S̃𝑇 S̃)𝑖 𝑗 =

∑
𝑢∈𝑉𝜌 [𝑖] (𝑑 (𝑢))

2

(∑𝑢∈𝑉𝜌 [𝑖] 𝑑 (𝑢))2 if 𝑖 and 𝑗 has

the same root (they are in the same connected component), and

(S̃𝑇 S̃)𝑖 𝑗 = 0 otherwise. Thus, we have 𝐸 [S̃𝑇 S̃] = Q𝑑 , and thereby

𝑉𝑎𝑟 [¤x] = 𝝈𝑇Q𝑑𝝈 − ∥𝝅𝝈 ∥22. Since
∑
𝑢∈𝑉𝜌 [𝑖] (𝑑 (𝑢))

2

(∑𝑢∈𝑉𝜌 [𝑖] 𝑑 (𝑢))2 ≤ 1, we can

easily derive that (Q𝑑)𝑖 𝑗 ≤ (Q)𝑖 𝑗 for arbitrary 𝑖 and 𝑗 ; the equality
holds only when all connected components of the spanning forests

have only one node, thus the variance inequality follows. □

According to Lemma 4.2 and Lemma 4.3, the variance of the

SF based estimators is not only related to the objective distribu-

tion 𝝅𝝈 , but also depends on the source distribution 𝝈 . Note that
the expected time complexity of sampling an 𝛼-random walk is

𝜏𝑤𝑎𝑙𝑘 = 1

𝛼 , while the expected time complexity of sampling a

Efficient Personalized PageRank Computation: The Power of Variance-Reduced Monte Carlo Approaches SIGMOD ’23, June 03–05, 2022, Woodstock, NY

rooted spanning forest is 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡 =
1

𝛼

∑
𝑢∈𝑉 𝜋 (𝑢,𝑢). A direct result

is that 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡 < 𝑛𝜏𝑤𝑎𝑙𝑘 . That is, the time for sampling one span-

ning forest is lower than sampling 𝑛 𝛼-random walks. When 𝛼 is

small, the margin is larger. If 𝝈 is a one-hot distribution, i.e. e𝑠 ,
𝑉𝑎𝑟 [x̃] = (Q)𝑠𝑠 − ∥𝝅𝝈 ∥2

2
= 1 − ∥𝝅𝝈 ∥2

2
, which is exactly equal to

the variance of the 𝛼-random walk based estimator x̄. However,
sampling one 𝛼-random walk (

1

𝛼) is obviously faster than sam-

pling one spanning forest (
1

𝛼

∑
𝑢∈𝑉 𝜋 (𝑢,𝑢)). Therefore, there is no

advantage to use SF based estimator when 𝝈 is a one-hot distribu-

tion. However, when 𝝈 is a "balanced" distribution (i.e. ∥𝝈 ∥ gets
smaller), the variance of SF based estimator will become smaller

while the variance of 𝛼-random walk based estimator remains the

same. Below, we analyze the special case when 𝝈 =
®1
𝑛 .

Variance analysis for the special case.When 𝝈 =
®1
𝑛 , we have

𝑉𝑎𝑟 [x̃] = 1

𝑛2

®1𝑇Q®1 − ∥𝝅𝝈 ∥2
2
. Note that the quantity

1

𝑛
®1𝑇Q®1 =

1

𝑛

∑
𝑢∈𝑉

∑
𝑣∈𝑉 𝑝

𝑟 (𝑢, 𝑣) = 1

𝑛

∑
𝑢∈𝑉 𝑛𝑢 , where 𝑝

𝑟 (𝑢, 𝑣) is the prob-

ability that 𝑢 and 𝑣 have the same root, and 𝑛𝑢 is the expected

number of nodes in the connected component that 𝑢 belongs to.

Denote by 𝑛𝑟 = 1

𝑛
®1𝑇Q®1 and by 𝑛𝑟𝑑 =

®1𝑇Q𝑑 ®1
𝑛 . Then, we have the

following results.

Lemma 4.4. If 𝑛𝑟 <
𝜏𝑓 𝑜𝑟𝑒𝑠𝑡
𝑛𝜏𝑤𝑎𝑙𝑘

+ (𝑛 − 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡
𝑛𝜏𝑤𝑎𝑙𝑘

)∥𝝅𝝈 ∥2
2
= 𝑛∥𝝅𝝈 ∥2

2
+

𝜏𝑓 𝑜𝑟𝑒𝑠𝑡
𝑛𝜏𝑤𝑎𝑙𝑘

(1 − ∥𝝅𝝈 ∥2
2
), the estimator x̃ is better than 𝝅𝝈 . On undirected

graphs, the estimator ¤x is strictly better than x̄.

Proof. We can compare two estimators by their variance divided

by their corresponding time complexity. Note that by sampling 𝑛

𝛼-random walks, the resulting variance is
1

𝑛 −
∥𝝅𝝈 ∥2

2

𝑛 , and the to-

tal time complexity is 𝑛𝜏𝑤𝑎𝑙𝑘 = 𝑂 (𝑛𝛼). According to our analysis,

we have 𝑉𝑎𝑟 [x̃] = 𝑛𝑟
𝑛 − ∥𝝅𝝈 ∥

2

2
, and the time complexity of sam-

pling a spanning forest is 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡 . Thus, the condition that x̃ is

better than x̄ is that

𝑛𝑟
𝑛
−∥𝝅𝝈 ∥2

2

𝜏𝑓 𝑜𝑟𝑒𝑠𝑡
<

1

𝑛
− ∥𝝅𝜎 ∥

2

2

𝑛

𝑛𝜏𝑤𝑎𝑙𝑘
. Next, we analyze the

variance𝑉𝑎𝑟 [¤x] = 𝑛𝑟𝑑
𝑛 − ∥𝝅𝝈 ∥

2

2
. Note that ®1𝑇Q𝑑®1 = 𝐸 [S̃𝑇 S̃] is the

sum of all elements of Q𝑑 . In an arbitrary spanning forest, we have

®1𝑇 S̃𝑇 S̃®1 =
∑
𝑖∈𝑉

|𝑉𝜌 [𝑖] | (
∑
𝑢∈𝑉𝜌 [𝑖] (𝑑 (𝑢))

2)
(∑𝑢∈𝑉𝜌 [𝑖] 𝑑 (𝑢))2 . According to the Cauchy-

Schwartz inequality, |𝑉𝜌 [𝑖] | (
∑
𝑢∈𝑉𝜌 [𝑖] (𝑑 (𝑢))

2) ≤ (∑𝑢∈𝑉𝜌 [𝑖] 𝑑 (𝑢))2
holds. Thus, we have ®1𝑇 S̃𝑇 S̃®1 < 1 and 𝑛𝑟𝑑 < 1. The variance of ¤x
satisfies 𝑉𝑎𝑟 [¤x] < 1

𝑛 − ∥𝝅𝝈 ∥
2

2
< 1

𝑛 −
∥𝝅𝝈 ∥2

2

𝑛 , and 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡 < 𝑛𝜏𝑤𝑎𝑙𝑘 ,

thus ¤x is better than the 𝛼-random walk based estimator x̄. □

Based on the SF-based estimators, we can easily devise two basic

Monte Carlo algorithmsMCF andMCFV (using the estimator ¤x for

undirected graphs), which are shown in Algorithm 6. Note that by

our analysis, Algorithm 6 is ineffective when the source distribution

is "unbalanced" (∥𝝈 ∥2 is large) and it is more suitable for a "bal-

anced" distribution. Note that in [27], a forward push procedure is

applied firstly before using the SF-based estimators, which ensures

that the desired distribution is relatively "balanced", thus result-

ing in good performance in practice. Our analysis presented here

provides a formal explanation for the cases under which SF-based

estimators perform better.

4.2 Reducing Variance by Power Iterations
Here we develop a power iteration approach to reduce the variances

of SF-based estimators. Since x̃ is an unbiased estimator of 𝝅𝝈 , we
know that 𝛼𝝈 + (1 − 𝛼)Px̃ is also an unbiased estimator of 𝝅𝝈 . Let

Algorithm 6:MCF (MCFV)
Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , sample size𝑇
Output: The estimated PageRank vector 𝝅̂𝝈

1 𝝅̂𝝈 ← 0, r̂← 𝝈 ;

2 for𝜔 = 1 : 𝑇 do
3 𝑟𝑜𝑜𝑡 ← Loop-earsed 𝛼-random walk sampling (𝐺 , 𝛼);

4 for 𝑖 = 1 : 𝑛 do
5 if 𝐺 is undirected then

6 𝝅̂𝝈 (𝑖) ← 𝝅̂𝝈 (𝑖) +
∑
𝑣∈𝑉𝜌 [𝑖] 𝒓̂ (𝑣)∑
𝑣∈𝑉𝜌 [𝑖] 𝑑 (𝑣)

𝑑 (𝑖)
𝑇

;

7 else
8 𝝅̂𝝈 (𝑟𝑜𝑜𝑡 (𝑖)) ← 𝝅̂𝝈 (𝑟𝑜𝑜𝑡 (𝑖)) + 𝒓̂ (𝑖)

𝑇
;

9 return 𝝅̂𝝈 ;

𝐹 ∈ F be a random rooted spanning forest and 𝜌 (𝐹) be the root set
of 𝐹 . Denote by 𝑡 is a root node and by𝑉𝑡 the connected component

that 𝑡 belongs to. Then, we have the following result.

Lemma 4.5. Let x̃⟨1⟩ be a vector of random variables that x̃⟨1⟩ =
𝛼𝝈+(1−𝛼)∑𝑡 ∈𝜌 (𝐹) (∑𝑤∈𝑁𝑜𝑢𝑡 (𝑢) (

∑
𝑢∈𝑉𝑡 𝝈 (𝑢)/𝑑𝑜𝑢𝑡 (𝑡))e𝑤). Then,

x̃⟨1⟩ is an unbiased estimator of 𝝅𝝈 , i.e., 𝐸 [x̃⟨1⟩] = 𝝅𝝈 . On undirected
graphs, we define ¤x⟨1⟩ as

¤x⟨1⟩ = 𝛼𝝈 + (1 − 𝛼)
∑︁
𝑢∈𝑉

∑︁
𝑤∈𝑁 (𝑢)

∑
𝑣∈𝑉𝜌 [𝑢] 𝝈 (𝑣)∑
𝑣∈𝑉𝜌 [𝑢] 𝑑 (𝑣)

e𝑤 .

Then, ¤x⟨1⟩ is an unbiased estimator of 𝝅𝝈 , i.e., 𝐸 [¤x⟨1⟩] = 𝝅𝝈 .

Proof. By the linearity of expectation, 𝐸 [x̃⟨1⟩] = 𝛼𝝈 + (1 −
𝛼)P𝐸 [x̃] = 𝛼𝝈 + (1 − 𝛼)Px̃ = 𝝅𝝈 . □

Intuitively, after sampling a rooted spanning forest, the estimator

x̃⟨1⟩ updates all the out-neighbors of roots instead of only updating
the roots. Also, the updates of ¤x⟨1⟩ on 𝑢 not only considers the

information within𝑉𝜌 [𝑢] , but also the information of the neighbors

of nodes in 𝑉𝜌 [𝑢] . By Lemma 3.4, the variance of the resulting

estimator is (1 − 𝛼)2 times smaller than the original estimator.

According to Lemma 3.6, this can be further extended to 𝐾 power

iterations.

Lemma 4.6. For any 𝐾 > 0, x̃⟨𝐾 ⟩ =
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 −

𝛼)𝐾P𝐾 x̃ is an unbiased estimator of 𝝅𝝈 . If the underlying graph is
undirected, ¤x⟨𝐾 ⟩ = ∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾 ¤x is also an

unbiased estimator of 𝝅𝝈 .

Lemma 4.7. 𝑉𝑎𝑟 [x̃⟨𝐾 ⟩] ≤ (1 − 𝛼)2𝐾 (𝝈𝑇Q𝝈 − ∥𝝅𝝈 ∥2
2
).

Proof. By iteratively applying the results in Lemma 3.4, we can

obtain that the variance is (1−𝛼)2𝐾 times smaller than the original

estimator, which indicates that 𝑉𝑎𝑟 [x̃⟨1⟩] ≤ (1 − 𝛼)2𝐾 (𝝈𝑇Q𝝈 −
∥𝝅𝝈 ∥2

2
). □

By a similar analysis, we can derive that:

Lemma 4.8. 𝑉𝑎𝑟 [¤x⟨1⟩] ≤ (1 − 𝛼)2𝐾 (𝝈𝑇Q𝑑𝝈 − ∥𝝅𝝈 ∥22).

Similar to the results shown in Lemma 3.8, by the linearity prop-

erty of PPR vector, applying a power iteration at each sample is

identical to applying a power iteration after all samples have been

drawn. Thus, we can first perform spanning forest sampling and

then use 𝐾 power iterations to reduce the variance of the estimator.

The resulting algorithm PF is outlined in Algorithm 7. It is easy

to derive that the time complexity of Algorithm 7 is 𝑂 (𝑇 ′𝜏 + 𝐾𝑚),

SIGMOD ’23, June 03–05, 2022, Woodstock, NY

Algorithm 7: PF (PFV)
Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , power iteration number 𝐾 ,

sample size𝑇
Output: The estimated PageRank vector 𝝅̂𝝈

1 𝝅̂𝝈 ← 0, 𝒓̂ ← 𝝈 ;

2 for𝜔 = 1 : 𝑇 do
3 𝑟𝑜𝑜𝑡 ← Loop-earsed 𝛼-random walk sampling (𝐺 , 𝛼);

4 for 𝑖 = 1 : 𝑛 do
5 if 𝐺 is undirected then

6 𝝅̂𝝈 (𝑖) ← 𝝅̂𝝈 (𝑖) +
∑
𝑣∈𝑉𝜌 [𝑖] 𝒓̂ (𝑣)∑
𝑣∈𝑉𝜌 [𝑖] 𝑑 (𝑣)

𝑑 (𝑖)
𝑇

;

7 else
8 𝝅̂𝝈 (𝑟𝑜𝑜𝑡 (𝑖)) ← 𝝅̂𝝈 (𝑟𝑜𝑜𝑡 (𝑖)) + 𝒓̂ (𝑖)

𝑇
;

9 𝝅̂𝝈 ←
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾 P𝐾 𝝅̂𝝈 ;

10 return 𝝅̂𝝈 ;

where 𝑇 ′ is the sample size and 𝜏 denotes the time for sampling a

spanning forest.

4.3 Reducing Variance Using Former Samples
Similar to the 𝛼-random walk based estimator, we can also use the

historical information of the former samples to reduce the variances

of the SF-based estimators. The basis idea is that for any existing

estimation 𝝅̂𝝈 obtained by former samples, the corresponding resid-

ual vector r̂ can be computed, based on which we can derive new

SF-based estimators.

Specifically, given that r̂ = 𝝈 + 1−𝛼
𝛼 𝑃 𝝅̂𝝈 − 1

𝛼 𝝅̂𝝈 , we have 𝝅𝝈 =

𝝅̂𝝈 + 𝚷r̂. It remains to use x̃ and ¤x to estimate 𝚷r̂. This leads to
new SF-based estimators.

Let 𝐹 be a rooted spanning forest sampled with probability

𝑃 (𝐹) ∝ ∏
𝑢∈𝜌 (𝐹)

𝛼
1−𝛼 𝑑𝑜𝑢𝑡 (𝑢) and 𝜌 (𝐹) be the root set of 𝐹 . For

a root 𝑡 ∈ 𝜌 (𝐹), let 𝑉𝑡 denote the connected component that 𝑡

belongs to. Then, we have the following results.

Lemma 4.9. x̃𝝅̂𝝈
= 𝝅̂𝝈 +

∑
𝑡 ∈𝜌 (𝐹)

∑
𝑢∈𝑉𝑡 r̂(𝑢)e𝑡 is an unbiased

estimator of 𝝅𝝈 .

Proof. By Lemma 2.3 and the linearity of expectation, we have

𝐸 [x̃𝝅̂𝝈
] = 𝝅𝝈 , since 𝝅𝝈 = 𝝅̂𝝈 + 𝚷r̂. □

Lemma 4.10. 𝑉𝑎𝑟 [x̃𝝅̂𝝈
] = r̂𝑇Qr̂ − ∥𝚷r̂∥2

2
.

Proof. Similar to the proof of Lemma 4.2, it is easy to derive

that 𝑉𝑎𝑟 [x̃𝝅̂𝝈
] = r̂𝑇Qr̂ − ∥𝚷r̂∥2

2
. □

Suppose that 𝝅̂𝝈1 and 𝝅̂𝝈2 are two estimations of 𝝅̂𝝈 , r̂1 and

r̂2 are the corresponding residual vectors. Define the Q-norm of a

vector x as ∥x∥Q = x𝑇Qx. Then, we have the following corollary.

Corollary 3. If r̂1, r̂2 satisfy ∥r̂1∥2
1
(∥ r̂1

∥ r̂1 ∥1 ∥Q − ∥𝚷
r̂1

∥ r̂1 ∥1 ∥
2

2
) ≤

∥r̂2∥2
1
(∥ r̂2

∥ r̂2 ∥1 ∥Q − ∥𝚷
r̂2

∥ r̂2 ∥1 ∥
2

2
), 𝑉𝑎𝑟 [x̃𝝅̂𝝈1] ≤ 𝑉𝑎𝑟 [x̃𝝅̂𝝈2].

Corollary 3 gives a formal condition under which the variance

can be reduced. According to Corollary 3, since
r̂1

∥ r̂1 ∥1 is a normal-

ized vector, the value of ∥ r̂1

∥ r̂1 ∥1 ∥Q − ∥𝚷
r̂1

∥ r̂1 ∥1 ∥
2

2
is related to the

distribution of r̂ and may not be very different for different residual

vectors (as indicated in our experiments). As a result, the variance is

mainly determined by the 𝐿1-norm of the residual vector. Since the

𝐿1-norm of the residual vector often decreases with the sample size

increases, we can devise a progressive sampling algorithm (similar

to Algorithm 5) to achieve variance reduction.

For undirected graphs, we also have the following lemma.

Lemma 4.11. Let 𝐹 be a rooted spanning forest sampled with prob-
ability 𝑃 (𝐹) ∝ ∏

𝑢∈𝜌 (𝐹)
𝛼

1−𝛼 𝑑 (𝑢). Denote by 𝑉𝜌 [𝑢] the connected
component that 𝑢 belongs to. Then,

x̃ = 𝝅̂𝝈 +
∑︁
𝑢∈𝑉

∑
𝑣∈𝑉𝜌 [𝑢] r̂(𝑣)∑
𝑣∈𝑉𝜌 [𝑢] 𝑑 (𝑣)

𝑑 (𝑢)e𝑢

is an unbiased estimator of 𝝅𝝈 .

Proof. By Lemma 2.4 and the linearity of expectation, we have

𝐸 [x̃𝝅̂𝝈
] = 𝝅𝝈 , since 𝝅𝝈 = 𝝅̂𝝈 + 𝚷r̂. □

Likewise, we can derive the variance of ¤x𝝅̂𝝈
.

Lemma 4.12. 𝑉𝑎𝑟 [¤x𝝅̂𝝈
] = r̂𝑇Q𝑑 r̂ − ∥𝚷r̂∥2

2
.

Proof. Similar to the proof of Lemma 4.3, we can derive that

𝑉𝑎𝑟 [x̃𝝅̂𝝈
] = r̂𝑇Qr̂ − ∥𝚷r̂∥2

2
. □

Let 𝝅̂𝝈1 and 𝝅̂𝝈2 be two estimations of 𝝅̂𝝈 , r̂1 and r̂2 be the

corresponding residual vectors. Define the Q𝑑 -norm of a vector x
as ∥x∥Q𝑑 = x𝑇Q𝑑x. Then, we have the following corollary.

Corollary 4. If r̂1, r̂2 satisfy ∥r̂1∥2
1
(∥ r̂1

∥ r̂1 ∥1 ∥Q𝑑 − ∥𝚷
r̂1

∥ r̂1 ∥1 ∥
2

2
) ≤

∥r̂2∥2
1
(∥ r̂2

∥ r̂2 ∥1 ∥Q𝑑 − ∥𝚷
r̂2

∥ r̂2 ∥1 ∥
2

2
), 𝑉𝑎𝑟 [¤x𝝅̂𝝈1] ≤ 𝑉𝑎𝑟 [¤x𝝅̂𝝈2].

Corollary 4 provides a formal condition under which the variance

can be reduced. Similar to Corollary 3, the variance of the estimation

is mainly determined by the 𝐿1-norm of the residual vector.

Based on the above results, we can devise a progressive sam-

pling algorithm to implement such a historical information-aided

variance reduction technique. The resulting algorithm PPF is given

in Algorithm 8. The algorithm has an additional parameter, i.e., the

batch size 𝐵. In each of 𝐵 batch, a number of spanning forests are

sampled (Line 4-10). Note that in order to achieve a lower variance,

it applies 𝐾 power iterations after sampling in each batch (Line 11),

which is identical to use x̃⟨𝐾 ⟩ (¤x⟨𝐾 ⟩) for estimation. With a number

of samples, the 𝐿1-norm of the residual vector is expected to be

reduced. Then, we construct a new estimator based on the residual

vector which is derived from the existing estimation (Line 3). In the

next batch, the variance of the estimator is expected to be lower.

It is easy to see that the time complexity of PPF is 𝑂 (𝑇 ′𝜏 + 𝐾𝑚)
since the cost for computing the residual is less than the costs for

sampling spanning forests and power iterations. Compared to PF,
PPF draws the same number of samples and conducts the same

number of power iterations, but it can reduce the variance which

is also verified in our experiments.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. We use 5 real-life datasets in the experiments. The de-

tailed information of these datasets is shown in Table 1. There are 3

undirected graphs Youtube, LiveJournal and Orkut, and 2 directed

graphs Pokec and Twitter in Table 1. For undirected graphs, we

replace each undirected edge with two directed edges in both direc-

tions. These datasets are widely used in previous studies [28, 42, 45]

to evaluate PPR computation algorithms. All these datasets can be

obtained from [26]. For single-source PPR query, we uniformly

generate 50 source nodes as the query set (same query set gen-

eration methods are also used in previous studies [27, 41, 42])

and report the average time and 𝐿1-error (Let 𝝅̂𝝈 be an estimated

PageRank vector, then the 𝐿1-error is defined as ∥𝝅̂𝝈 − 𝝅𝝈 ∥1 =∑
𝑢∈𝑉 |𝝅̂𝝈 (𝑢) − 𝝅𝝈 (𝑢) |).

Efficient Personalized PageRank Computation: The Power of Variance-Reduced Monte Carlo Approaches SIGMOD ’23, June 03–05, 2022, Woodstock, NY

Algorithm 8: PPF (PPFV)
Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , power iteration number 𝐾 ,

sample size𝑇 , batch size 𝐵
Output: The estimated PageRank vector 𝝅̂𝝈

1 𝝅̂𝝈 ← 0, r← 𝝈 ;

2 for 𝑖 = 1 : 𝐵 do
3 r̂← 𝝈 + 1−𝛼

𝛼 𝑃 𝝅̂𝝈 − 1

𝛼 𝝅̂𝝈 ;

4 for𝜔 = 1 : ⌈𝑇 /𝐵⌉ do
5 𝑟𝑜𝑜𝑡 ← Loop-earsed 𝛼-random walk sampling (𝐺 , 𝛼);

6 for 𝑖 = 1 : 𝑛 do
7 if 𝐺 is undirected then

8 𝝅̂𝝈 (𝑖) ← 𝝅̂𝝈 (𝑖) +
∑
𝑣∈𝑉𝜌 [𝑖] 𝒓̂ (𝑣)∑
𝑣∈𝑉𝜌 [𝑖] 𝑑 (𝑣)

𝑑 (𝑖)
⌈𝑇 /𝐵⌉ ;

9 else
10 𝝅̂𝝈 (𝑟𝑜𝑜𝑡 (𝑖)) ← 𝝅̂𝝈 (𝑟𝑜𝑜𝑡 (𝑖)) + 𝒓̂ (𝑖)

⌈𝑇 /𝐵⌉ ;

11 𝝅̂𝝈 ←
∑𝐾
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾+1P𝐾+1𝝅̂𝝈 ;

12 return 𝝅̂𝝈 ;

Table 1: Datasets
Dataset 𝑛 𝑚 𝑚/𝑛 Type

Youtube 1,134,890 2,987,624 2.63 undirected

Pokec 1,632,803 30,622,564 18.75 directed

LiveJournal 4,846,609 42,851,237 8.84 undirected

Orkut 3,072,441 117,185,083 38.14 undirected

Twitter 41,652,230 1,468,365,182 35.25 directed

Different algorithms. For single-source PPR query, we compare

the proposed algorithms with two state-of-the-art algorithms which

are SpeedPPR [45] and SpeedL (SpeedLV) [27]. We do not include

other algorithms for comparison because all of them are outper-

formed by these two algorithms [27, 45]. For the proposed algo-

rithms, PW (Power 𝛼-randomWalk sampling) denotes Algorithm 4

which combines 𝛼-random walk sampling and power iterations.

PPW (Progressive Power 𝛼-random Walk sampling) is Algorithm 5

which improves PW by utilizing former samples. PF (PFV) (Power
spanning Forests sampling) is Algorithm 7 which combines span-

ning forests sampling and power iterations. PPF (PPFV) (Progres-
sive Power spanning Forests sampling) is Algorithm 8 which im-

proves PF by using former samples. For PageRank centrality com-

putation, we use two Monte Carlo algorithms MCW (𝛼-random

walk sampling) andMCF (MCFV) (spanning forests sampling) as

baselines. We also include a single-source PPR algorithm FORA [42]

for comparison, since it was also extended for PageRank centrality

computation in [41]. For high-precision PPR algorithms, we include

the state-of-the-art algorithm PowerPush [45] for comparison.

Parameters. For PW and PPW, there is a parameter 𝑇 which con-

trols the sample size of the 𝛼-random walk. For a fair comparison,

we set 𝑇 as 𝑛 log𝑛 by default to make sure that the number of ran-

dom walk samples is similar to that used in SpeedPPR [45]. For

PPW, there is an additional parameter 𝐵 (the batch size); and we

set 𝐵 = 3 by default, as we can achieve very good performance with

𝐵 = 3. For PF (PFV) and PPF (PPFV), there is a parameter𝑇 ′ to con-
trol the number of spanning forests samples. We set𝑇 ′ = 𝑇 × 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡𝜏𝑤𝑎𝑙𝑘
by default to guarantee that the sample size is similar to that of

SpeedL (SpeedLV) for a fair comparison. For the parameter 𝐾 , we

set 𝐾 = 𝑙𝑜𝑔1−𝛼𝜖2
, 𝜖 = 0.5 by default for PW and PF (PFV), and

𝐾 = 𝑙𝑜𝑔1−𝛼𝜖2/𝐵, 𝜖 = 0.5 for PPW and PPF (PPFV) according to

Corollary 1. Since most previous studies [42, 45] use a balance strat-

egy, for all our algorithms, we also adopt such a balance strategy,

adaptively setting the parameter 𝐾 (the number of power itera-

tions) to ensure that the sampling time is roughly equal to the time

taken by 𝐾-power iterations. Note that with such a balance strat-

egy, the same error guarantee still holds for all our algorithms, as

Table 2: Comparison between 𝛼-RW and SF based estimators

Dataset 𝜶 𝑛∥𝝅𝝈 ∥2
2

𝒏𝝉𝒘𝒂𝒍𝒌
𝝉𝒇 𝒐𝒓𝒆𝒔𝒕

®1𝑻 Q®1
𝒏

𝐿1-error
x̄ x̃ ¤x

Youtube 0.2 62.69 10.4 891.74 0.18 0.44 0.028
0.01 89.92 190.91 210729 0.16 1.25 0.003

Pokec 0.2 2.61 6.37 39.22 0.19 0.31 \
0.01 35.98 29.11 2362.33 0.13 0.57 \

LiveJournal 0.2 3.95 8.36 84.23 0.18 0.34 0.032
0.01 7.26 168.83 55341.7 0.16 1.11 0.12

Orkut 0.2 2.73 6.69 65.57 0.19 0.41 0.03
0.01 4.12 152.54 36480 0.18 1.18 0.003

Twitter 0.2 10.69 3.4 214.87 0.17 0.25 \
0.01 6.4 3.02 345.5 0.13 0.27 \

discussed in Section 3.2. We will also study the effect of the param-

eters 𝐵 and 𝐾 of our algorithms. For all the baseline algorithms, we

use the default parameter settings as used in their original papers

[27, 41, 45].

All the experiments are conducted on a Linux 20.04 server with

Intel 2.0 GHz CPU and 128GB memory. We obtain the ground-truth

PPR results by the power iteration algorithmwith an 𝐿1-error 10
−16

,

which is near to “C++ double precision”. All the proposed algorithms

are implemented with C++. For SpeedPPR, SpeedL (SpeedLV) and
PowerPush, we use the open-source C++ implementations by their

original authors [27, 45].

5.2 Comparing 𝛼-RW and SF based Estimators
We compare the performance of the 𝛼-random walk (𝛼-RW) based

estimator x̄ and the spanning forests (SF) based estimators (x̃ and

¤x) to verify the analysis in Section 4.1. Note that as we analyzed

in Section 4.1, for the single-source PPR computation where the

source distribution 𝝈 is an one-hot distribution, the 𝛼-RW based es-

timator is clearly better than SF based estimators. However, for the

PageRank centrality computation where 𝝈 =
®1
𝑛 is a balanced distri-

bution, the SF based estimators can be better than the 𝛼-RW based

estimator. Thus, in this experiment, we focus mainly on the problem

of PageRank centrality computation. Since the performance of the

𝛼-RW and SF based estimators is related to 𝑛𝑟 =
®1𝑇Q®1
𝑛 , 𝑛∥𝝅𝝈 ∥2

2
and

𝑛𝜏𝑤𝑎𝑙𝑘
𝜏𝑓 𝑜𝑟𝑒𝑠𝑡

as shown in Lemma 4.4, we perform SF sampling to estimate

𝑛𝑟 , ∥𝝅𝝈 ∥2
2
and 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡 , and perform 𝛼-RW sampling to estimate

𝜏𝑤𝑎𝑙𝑘 . To estimate the PageRank centrality, we simulate 𝑛 log𝑛

𝛼-random walks for x̄ and we sample spanning forests to make

sure that the running time of these two algorithms are almost the

same. The results are shown in Table 2. As can be seen, x̄ is always

better than x̃. This is because 𝑛𝑟 is often much larger than 𝑛∥𝝅𝝈 ∥2
2

on real-world graphs, thus the condition in Lemma 4.4 is hard to

meet. The accuracy of x̃ is closely dependent on 𝑛𝑟 ; the smaller it

is, the higher accuracy the SF based estimator x̃ achieves. In ad-

dition, we can see that the improved SF estimator ¤x substantially

outperforms both x̄ and x̃ on undirected graphs. This is because (1)

the variance of ¤x is strictly smaller than both x̄ and x̃; and (2) the

time for sampling 𝑛 𝛼-random walks is much higher than that for

sampling a spanning forest as shown in Table 2 (column 4). These

results confirm our theoretical analysis in Section 4.1.

5.3 Results of Single-source PPR Query
In this experiment, we compare the performance of the proposed

algorithms (PW, PPW, PF, PFV, PPF, and PPFV) with the state-of-

the-art algorithms (SpeedPPR, SpeedL and SpeedLV) for processing
single-source PPR query. Fig. 4 plots the 𝐿1-error as a function of

query time for each algorithm on all datasets, with 𝛼 = 0.2 and

SIGMOD ’23, June 03–05, 2022, Woodstock, NY

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 0.5 1.0 1.5 2.0

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

SPEEDLV

PW

PF

PFV

PPW

PPF

PPFV

(a) Youtube, 𝛼=0.2

10
-4

10
-3

10
-2

10
-1

10
0

0 0.8 1.6 2.4 3.2

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

PW

PF

PPW

PPF

(b) Pokec, 𝛼=0.2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 4 8 12 16

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

SPEEDLV

PW

PF

PFV

PPW

PPF

PPFV

(c) LiveJournal, 𝛼=0.2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 2 4 6 8 10

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

SPEEDLV

PW

PF

PFV

PPW

PPF

PPFV

(d) Orkut, 𝛼=0.2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 100 200 300 400

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

PW

PF

PPW

PPF

(e) Twitter, 𝛼=0.2

10
-8

10
-6

10
-4

10
-2

10
0

0 10 20 30 40

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

SPEEDLV

PW

PF

PFV

PPW

PPF

PPFV

(f) Youtube, 𝛼=0.01

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 20 40 60 80 100

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

PW

PF

PPW

PPF

(g) Pokec, 𝛼=0.01

10
-8

10
-6

10
-4

10
-2

10
0

50 75 100 125 150

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

SPEEDLV

PW

PF

PFV

PPW

PPF

PPFV

(h) LiveJournal, 𝛼=0.01

10
-8

10
-6

10
-4

10
-2

10
0

0 50 100 150 200

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

SPEEDLV

PW

PF

PFV

PPW

PPF

PPFV

(i) Orkut, 𝛼=0.01

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 2000 4000 6000

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

PW

PF

PPW

PPF

(j) Twitter, 𝛼=0.01

Figure 4: Performance of different algorithms for computing single-source personalized PageRank

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 20 40 60 80

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

PW

PF

PPW

PPF

(a) Pokec, 𝐵 = 7

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 20 40 60 80

L
1

-e
rr

o
r

query time (sec)

SPEEDPPR

SPEEDL

PW

PF

PPW

PPF

(b) Pokec, 𝐵 = 9

Figure 5: Results of computing single-source personalized
PageRank on Pokec with different batch size (𝛼 = 0.01)

𝛼 = 0.01 respectively. We vary 𝑇 to make sure the number of sam-

ples of all approximate algorithms are similar, and vary 𝐾 to ensure

a relatively good performance for all algorithms. Note that for undi-

rected graphs, there are three additional algorithms SpeedLV, PFV
and PPFV as shown in Fig. 4, which are based on the improved SF

estimator ¤x. As a result, there are 9 curves for undirected graphs

and only 6 curves for directed graphs. As can be seen, among all

our algorithms, PPW achieves the best overall performance, fol-

lowed by PPF (PPFV), PW, and PF (PFV). We also note that PPW
considerably improves PW by the progressive sampling strategy,

since the variance is further reduced by using the historical infor-

mation of former samples. When 𝛼 = 0.2, our algorithms including

PPW, PPF (PPFV), and PW can achieve comparable performance

as the state-of-the-art algorithms on all datasets. In Figs.4(b-c), al-

though SpeedPPR performs better than our algorithms in some

cases, our best algorithm can achieve much lower 𝐿1-error using a

little more time. Moreover, on the largest dataset Twitter, our algo-
rithms (PW, PPW and PPF) are significantly better than SpeedPPR.
When 𝛼 = 0.01, however, we can clearly see that our best algo-

rithms including PPW and PPF (PPFV) substantially outperform

the state-of-the-art algorithms on most datasets. We also note that

on Pokec (Fig. 4(g)), SpeedPPR performs better than our algorithms.

This is because the parameter batch size 𝐵 is not proper in this case.

However, when enlarging the default batch size 𝐵 = 3 to 𝐵 = 7,

PPW can achieve 10
−4 𝐿1-error using 22 seconds, which is much

better than SpeedPPR (40 seconds). The results of different 𝐵 (𝐵 = 7

and 𝐵 = 9) on Pokec can be found in Fig. 5. We can clearly see

that PPW can outperform SpeedPPR in these paramter settings.

Although Pokec is an exception, we find that the default batch size

𝐵 = 3 is proper for most datasets (see Fig. 12). In addition, our best

algorithms can obtain extremely accurate results (the 𝐿1 errors of

our best algorithms can even be less than 10
−8
) on most datasets

using very low query time. For example, on theOrkut dataset, PPW,

PPFV, and PPF can achieve the 𝐿1 errors 4.6 × 10
−9
, 2.2 × 10

−8
,

3.6 × 10
−7

using 114, 115 and 114 seconds respectively. However,

on the same dataset, SpeedPPR, SpeedL and SpeedLV obtain the

𝐿1 errors 1.8 × 10
−4
, 5.2 × 10

−2
, 3.7 × 10

−4
using 160, 159 and

159 seconds respectively. These results indicate that the proposed

variance reduction techniques are very powerful to improve the

performance of Monte Carlo based PPR computation algorithms.

Moreover, compared to the state-of-the-art SpeedPPR algorithm,

our best algorithm PPW is much easier to implement, thus it is

highly recommended for PPR estimation in real-world applications.

5.4 Results of PageRank Computation
In this experiment, we compare the performance of our algorithms

with the baseline algorithms MCW, MCF (MCFV) and FORA for

PageRank centrality computation (i.e., 𝝈 =
®1
𝑛). The results are

shown in Fig. 6. SinceMCFV, PFV and PPFV can only be applied

for undirected graphs, there are 10 curves for undirected graphs

and only 7 curves for directed graphs. We vary𝑇 and 𝐾 to ensure a

good performance of for all algorithms. As can be seen, when 𝛼 =

0.2, all our algorithms achieve comparable performance on most

datasets and all of them significantly outperform the state-of-the-

art algorithms. To compareMCW,MCF, andMCFV on undirected

graphs, we can clearly see that the improved SF based algorithm

MCFV is always better than the 𝛼-RW based algorithm MCW,

because the source distribution 𝝈 =
®1
𝑛 is a "balanced" distribution.

This result further confirms our theoretical analysis in Section 4.1.

When 𝛼 = 0.01, we can observe that PW and PF (PPF) improves

over MCW and MCF (MCFV); and PPW and PPF (PPFV) further
improves PW and PF (PFV) respectively (in this case, MCW, MCF
and MCFV run out of 24 hours, thus we do not show the results

in Fig. 6). Furthermore, our best algorithms PPW and PPF (PPFV)
also substantially outperform FORA on all datasets. For example,

on Orkut, both PPW and PPFV consume around 200 seconds to

compute the PageRank vector with 𝐿1-error around 10
−10

. The

state-of-the-art algorithm FORA, however, consumes much more

time (1200 seconds) but achieves a much larger 𝐿1-error (10
−3
).

These results demonstrate the high effectiveness of the proposed

variance reduction techniques.

5.5 Comparison with High-precision Algorithm
In previous experiments, our algorithms can achieve very low 𝐿1-

errors within a short time. Here we compare the performance of

our best algorithms (PPW and PPFV) with the state-of-the-art high

precision PPR algorithm PowerPush [45]. The results on Orkut are

Efficient Personalized PageRank Computation: The Power of Variance-Reduced Monte Carlo Approaches SIGMOD ’23, June 03–05, 2022, Woodstock, NY

10
-8

10
-6

10
-4

10
-2

10
0

10
-1

10
0

10
1

10
2

10
3

L
1

-e
rr

o
r

query time (sec)

MCW

MCF

MCFV

FORA

PW

PPW

PF

PPF

PFV

PPFV

(a) Youtube, 𝛼=0.2

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

L
1

-e
rr

o
r

query time (sec)

MCW

MCF

FORA

PW

PPW

PF

PPF

(b) Pokec, 𝛼=0.2

10
-6

10
-4

10
-2

10
0

10
0

10
1

10
2

10
3

L
1

-e
rr

o
r

query time (sec)

MCW

MCF

MCFV

FORA

PW

PPW

PF

PPF

PFV

PPFV

(c) LiveJournal, 𝛼=0.2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

L
1

-e
rr

o
r

query time (sec)

MCW

MCF

MCFV

FORA

PW

PPW

PF

PPF

PFV

PPFV

(d) Orkut, 𝛼=0.2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

L
1

-e
rr

o
r

query time (sec)

MCW

MCF

FORA

PW

PPW

PF

PPF

(e) Twitter, 𝛼=0.2

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
1

10
2

10
3

L
1

-e
rr

o
r

query time (sec)

FORA

PW

PPW

PF

PPF

PFV

PPFV

(f) Youtube, 𝛼=0.01

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

L
1

-e
rr

o
r

query time (sec)

FORA

PW

PPW

PF

PPF

(g) Pokec, 𝛼=0.01

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
4

L
1

-e
rr

o
r

query time (sec)

FORA

PW

PPW

PF

PPF

PFV

PPFV

(h) LiveJournal, 𝛼=0.01

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
4

L
1

-e
rr

o
r

query time (sec)

FORA

PW

PPW

PF

PPF

PFV

PPFV

(i) Orkut, 𝛼=0.01

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
1

10
2

10
3

10
4

L
1

-e
rr

o
r

query time (sec)

FORA

PW

PPW

PF

PPF

(j) Twitter, 𝛼=0.01

Figure 6: Performance of different algorithms for computing PageRank centrality

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 3 6 9 12 15

L
1

-e
rr

o
r

query time (sec)

PPW PPFV PowerPush

(a) Orkut, 𝛼 = 0.2

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

0 100 200 300 400 500 600

L
1

-e
rr

o
r

query time (sec)

PPW PPFV PowerPush

(b) Orkut, 𝛼 = 0.01

Figure 7: Comparison with high-precision algorithm

shown in Fig. 7. For the other datasets, the results are consistent.

As can be seen, our algorithms can achieve smaller 𝐿1-error within

shorter time compared to PowerPush. For example, when 𝛼 = 0.01,

PowerPush takes around 500 seconds to achieve an 𝐿1-error 10
−8

while both PPW and PPFV require less than 150 seconds, which is

at least 3× faster. This result indicates that our variance-reduced
solutions are very efficient for high-precision PPR computation.

5.6 Results with Relative Error Guarantee
In this experiments, we evaluate the performance of our solutions

by varying the relative error 𝜖 . For the proposed methods, we set

parameters to make sure that an (𝜖, 𝛿)-error is satisfied. Specif-
ically, according to Lemma 3.11, PW can guarantee an relative

error 𝜖 by setting the number of random walks 𝑇 as 𝑛 log𝑛, and

set 𝐾 = log
1−𝛼 𝜖

2
. We also adopt the balanced strategy used in

[42, 45] for a fair comparison. For PPW, since in each batch, the

variance is reduced in PPW, the same error guarantee still holds

when 𝑇 = 𝑛 log𝑛, 𝐾 = log
1−𝛼 𝜖

2
. Additionally, we set 𝐵 = 3. For

SF-based algorithms, similar to SpeedL and SpeedLV [27], it is hard

to derive an (𝜖, 𝛿)-error bound. Following [27], we set the number

of spanning forests to make sure that the Monte-Carlo phase of the

algorithm takes similar time with that of 𝛼-RW based algorithm

SpeedPPR so that they are expected to obtain a similar (𝜖, 𝛿)-error.
For the baseline methods FORA [42], SpeedPPR [45] and SpeedL,
SpeedLV [27], we set parameters following their original imple-

mentations. We compare the running time of different algorithms

with varying 𝜖 from 0.5 to 0.1. We also plot the 𝐿1-error of various

algorithms with varying 𝜖 . We conduct experiments on both di-

rected and undirected graphs. Fig. 8 and Fig. 9 show the results on

Orkut and Twitter respectively. The results on the other datasets are
consistent. It can be seen that when 𝜖 gets smaller, the running time

of all algorithms become longer, and the 𝐿1-error gets smaller. For

single source query, PW is significantly better than SpeedPPR to

achieve the same relative error 𝜖 ; PPW takes a little more time than

10
0

10
1

10
2

0.10.20.30.40.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

SPEEDPPR

SPEEDL

SPEEDLV

PW

PF

PFV

PPW

PPF

PPFV

(a) Orkut, time (𝛼 = 0.2)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0.10.20.30.40.5

L
1

-e
rr

o
r

ε

SPEEDPPR

SPEEDL

SPEEDLV

PW

PF

PFV

PPW

PPF

PPFV

(b) Orkut, error (𝛼 = 0.2)

10
1

10
2

10
3

10
4

0.10.20.30.40.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

SPEEDPPR

SPEEDL

SPEEDLV

PW

PF

PFV

PPW

PPF

PPFV

(c) Orkut, time (𝛼 = 0.01)

10
-8

10
-6

10
-4

10
-2

10
0

0.10.20.30.40.5

L
1

-e
rr

o
r

ε

SPEEDPPR

SPEEDL

SPEEDLV

PW

PF

PFV

PPW

PPF

PPFV

(d) Orkut, error (𝛼 = 0.01)

10
1

10
2

10
3

10
4

0.10.20.30.40.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

SPEEDPPR

SPEEDL

PW

PPW

PF

PPF

(e) Twitter, time (𝛼 = 0.2)

10
-5

10
-4

10
-3

10
-2

10
-1

0.10.20.30.40.5

L
1

-e
rr

o
r

ε

SPEEDPPR

SPEEDL

PW

PPW

PF

PPF

(f) Twitter, error (𝛼 = 0.2)

10
1

10
2

10
3

10
4

0.10.20.30.40.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

SPEEDPPR

SPEEDL

PW

PPW

PF

PPF

(g) Twitter, time (𝛼 = 0.01)

10
-8

10
-6

10
-4

10
-2

10
0

0.10.20.30.40.5

L
1

-e
rr

o
r

ε

SPEEDPPR

SPEEDL

PW

PPW

PF

PPF

(h) Twitter, error (𝛼 = 0.01)

Figure 8: Results of different algorithms with relative error
guarantee for single source PPR query

PW, but it can achieve much lower 𝐿1-error than PW. Moreover,

compared to SpeedPPR, PPW can achieve a much lower 𝐿1-error

using less time. For example, when 𝛼 = 0.01 and 𝜖 = 0.1, PPW is an

order of magnitude faster than SpeedPPR. Furthermore, on Orkut,
the 𝐿1-error of PPW is even 4 orders of magnitude smaller than that

of SpeedPPR. PF (PPF) is worse than PW (PPW) and PFV (PPFV)
is competitive with PW (PPW). Likewise, for PageRank centrality

computation, our algorithms are also significantly better than the

state-of-the-art algorithm FORA. These results indicate that our
variance-reduced techniques are indeed very efficient and effective

for PPR computations with relative error guarantees.

SIGMOD ’23, June 03–05, 2022, Woodstock, NY

10
0

10
1

10
2

10
3

10
4

10
5

0.10.20.30.40.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

MCW

MCF

MCFV

FORA

PW

PPW

PF

PPF

PFV

PPFV

(a) Orkut, time (𝛼 = 0.2)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0.10.20.30.40.5

L
1

-e
rr

o
r

ε

MCW

MCF

MCFV

FORA

PW

PPW

PF

PPF

PFV

PPFV

(b) Orkut, error (𝛼 = 0.2)

10
0

10
1

10
2

10
3

10
4

10
5

0.10.20.30.40.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

PW

PPW

PF

PPF

PFV

PPFV

(c) Orkut, time (𝛼 = 0.01)

10
-8

10
-6

10
-4

10
-2

10
0

0.10.20.30.40.5

L
1

-e
rr

o
r

ε

FORA

PW

PPW

PF

PPF

PFV

PPFV

(d) Orkut, error (𝛼 = 0.01)

10
1

10
2

10
3

10
4

10
5

0.10.20.30.40.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

MCW

MCF

FORA

PW

PPW

PF

PPF

(e) Twitter, time (𝛼 = 0.2)

10
-4

10
-3

10
-2

10
-1

10
0

0.10.20.30.40.5

L
1

-e
rr

o
r

ε

MCW

MCF

FORA

PW

PPW

PF

PPF

(f) Twitter, error (𝛼 = 0.2)

10
2

10
3

10
4

10
5

0.10.20.30.40.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

PW

PPW

PF

PPF

(g) Twitter, time (𝛼 = 0.01)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.10.20.30.40.5

L
1

-e
rr

o
r

ε

FORA

PW

PPW

PF

PPF

(h) Twitter, error (𝛼 = 0.01)

Figure 9: Results of different algorithms with relative error
guarantee for PageRank centrality computation

10
-8

10
-6

10
-4

10
-2

10
0

10
-1

10
0

10
1

10
2

10
3

L
1

-e
rr

o
r

query time (sec)

MCW

MCF

MCFV

FORA

PW

PPW

PF

PPF

PFV

PPFV

(a) Youtube, 𝛼 = 0.2

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
1

10
2

10
3

L
1

-e
rr

o
r

query time (sec)

FORA

PW

PPW

PF

PPF

PFV

PPFV

(b) Youtube, 𝛼 = 0.01

Figure 10: Performance of various algorithms for computing
PPR with a random source distribution 𝝈

5.7 Results of PPR Computation with Random 𝜎

In this experiment, we evaluate our algorithms for PPR computa-

tion with a random distribution 𝝈 . Specifically, we draw 𝑛 uniform

random numbers in [0, 1] and normalize the vector to generate a

source distribution 𝝈 . We generate 50 such source distributions as

the query set and report the average performance. The results on

Youtube are shown in Fig. 10. We can also observe similar results on

the other datasets. As shown in Fig. 10, the results are very similar

to those of the PageRank centrality computation. The proposed

algorithms PW, PPW, PF (PFV), PPF (PPFV) significantly outper-

form the baseline algorithmsMCW,MCF (MCFV) and FORA for

both 𝛼 = 0.2 and 𝛼 = 0.01. For example, when 𝛼 = 0.01, PPW
and PPFV consume around 40 seconds to compute the PPR vector

with 𝐿1-error around 10
−12

and 10
−10

. The state-of-the-art algo-

rithm FORA, however, consumes much more time (180 seconds)

but achieve a much larger 𝐿1-error (10
−3
). These results further

confirm the high effectiveness of the proposed solutions.

3

6

9

12

20 40 60 80 100

q
u

e
ry

 t
im

e
 (

se
c
)

K

SS-PW

SS-PF

SS-PFV

SS-PPW

SS-PPF

SS-PPFV

PC-PW

PC-PF

PC-PFV

PC-PPW

PC-PPF

PC-PPFV

(a) Youtube (𝛼 = 0.01)

10
-8

10
-6

10
-4

10
-2

10
0

20 40 60 80 100

L
1

-e
rr

o
r

K

SS-PW

SS-PF

SS-PFV

SS-PPW

SS-PPF

SS-PPFV

PC-PW

PC-PF

PC-PFV

PC-PPW

PC-PPF

PC-PPFV

(b) Youtube (𝛼 = 0.01)

Figure 11: Results of our algorithms with varying 𝐾

3

6

9

12

1 2 3 4 5 6 7

q
u

e
ry

 t
im

e
 (

se
c
)

batch size

SS-PPW

SS-PPF

SS-PPFV

PC-PPW

PC-PPF

PC-PPFV

(a) Youtube (𝛼 = 0.01)

10
-6

10
-4

10
-2

10
0

1 2 3 4 5 6 7

L
1

-e
rr

o
r

batch size

SS-PPW

SS-PPF

SS-PPFV

PC-PPW

PC-PPF

PC-PPFV

(b) Youtube (𝛼 = 0.01)

Figure 12: Results of our algorithms with varying 𝐵

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0 20 40 60 80 100

L
1

-e
rr

o
r

query time (sec)

PW PW+ PPW

(a) Orkut (𝛼 = 0.2)

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
4

L
1

-e
rr

o
r

query time (sec)

PW PW+ PPW

(b) Orkut (𝛼 = 0.01)

Figure 13: Results of different implementations of the power
iteration procedure

5.8 Results of Varying Parameters
Here we study the effect of the parameters 𝐾 and 𝐵 in our algo-

rithms. Recall that PW, PF (PFV), PPW, and PPF (PPFV) have a

parameter 𝐾 , while PPW and PPF (PPFV) also have an additional

parameter 𝐵. To study the effect of 𝐾 , we vary 𝐾 from 20 to 100

for all algorithms. Fig. 11 shows the results of our algorithms with

varying 𝐾 on Youtube given that 𝛼 = 0.01. We can also observe

similar results on the other datasets and with other values of 𝛼 .

Note that in Fig. 11, an algorithm with a prefix “SS” (PC) means

that it is used to compute the single-source PPR query (PageRank

centrality). As expected, when 𝐾 gets larger, the 𝐿1-errors of each

algorithm become smaller, but its computation time also grows. As

a result, in our previous experiments, we adaptively set 𝐾 so that

the time costs for sampling and power iterations are roughly equal,

which can achieve good performance in practice.

To investigate the effect of 𝐵, we vary 𝐵 from 1 to 7 for PPW,

PPF, and PPFV. The results on Youtube with 𝛼 = 0.01 are shown

in Fig. 12. The results on the other datasets and with other 𝛼 values

are consistent. As shown in Fig. 12, the query time of all algorithms

is insensitive w.r.t. the parameter 𝐵, as the time complexity of our

algorithms is not related to 𝐵. We can also see that when 𝐵 increases,

the𝐿1-errors ofmost our algorithms decrease first and then increase.

This is because when 𝐵 becomes too large, the number of samples

in each batch is not sufficient to make the norm of the residual

vector decrease, thus may result in larger variances. As a result, we

recommend to set 𝐵 as a small integer, such as 𝐵 = 3 as used in our

previous experiments, for real-world PPR computation applications.

5.9 Comparing Various Power Procedures
Note that in all previous experiments, our algorithms are inte-

grated with a basic power iteration procedure. However, the power

Efficient Personalized PageRank Computation: The Power of Variance-Reduced Monte Carlo Approaches SIGMOD ’23, June 03–05, 2022, Woodstock, NY

Table 3: Recommendation for different PPR algorithms. "SSQ" is
the abbreviation of "single source query", "PRC" is the abbreviation
of "PageRank computation".

directed graph undirected graph
large 𝛼 small 𝛼 large 𝛼 small 𝛼

(e.g. 𝛼 = 0.2) (𝛼 = 0.01) (e.g. 𝛼 = 0.2) (𝛼 = 0.01)

SSQ relative error PW PW PW, PFV PW, PFV
𝐿1-error PW, PPW PPW PW, PPFV PPW, PPFV

PRC relative error PW PW PW, PFV PW, PFV
𝐿1-error PPW PPW PPW, PPFV PPW, PPFV

iteration procedure can be optimized using the PowerPush algo-

rithm proposed in [45]. Specifically, the optimization techniques

in PowerPush include using local updates when the size of active

nodes is small, and using dynamic 𝐿1-error threshold to achieve

a desired 𝐿1-error. We adopt the implementation of PowerPush
in our PW algorithm, and the resulting algorithm is denoted by

PW+. Note that PPW is very hard to integrate with PowerPush,
because we do not know the 𝐿1-error that we need to achieve in

each batch of PPW. Likewise, both PF and PFV can also integrate

with PowerPush, but their results are very similar to PW+. To avoid

redundancy, we mainly compare the performance of PW, PW+ and

PPW in terms of both running time and 𝐿1-error. Fig. 13 shows the

results on Orkut, and similar results can also be observed on the

other datasets. As can be seen, PW+ can achieve the same 𝐿1-error

using 2× shorter time than PW, which is consistent with the results

reported in [45] where PowerPush is around 2× faster than the

basic power iteration method. However, such an improvement is

limited. For comparison, PPW can achieve the same 𝐿1-error in

much shorter time (10× faster than PW when 𝛼 = 0.01). This result

indicates that our estimators which utilize historical sample infor-

mation aremuchmore powerful than the optimized implementation

of power iteration used in PowerPush.

5.10 Summary of findings
Here we summarize our main findings. Among all the proposed

methods, PW is competitive or better than the state-of-the-art PPR

computation algorithms. PPW further significantly improves over

PW by utilizing the progressively sampling technique. When the

applications only require to guarantee a relative error 𝜖 , PW is

better than all other algorithms. When we want to achieve a lower

𝐿1-error, PPW is much better than the other algorithms. For SF

based algorithms, PF and PPF are outperformed by PW and PPW.

On undirected graphs, by utilizing the variance-reduced estimators

¤x, PFV and PPFV are competitive to PW and PPW. Based on these

results, we make the following recommendations for selecting a

PPR algorithm for practical applications in Table 3. For example,

for PPR computation on undirected graphs, when 𝛼 is relatively

small (e.g. 𝛼 = 0.01) and we only require a relative error guarantee,

we recommend to use PW or PFV. When we want more accurate

results, however, we recommend PPW and PPFV.

6 RELATEDWORK
Existing algorithms for (personalized) PageRank computation can

be classified into two categories: deterministic algorithms and

approximate algorithms. Deterministic PageRank algorithms are

mainly based on the power method [8, 34, 47] or the forward push

method [1, 5, 21]. Many efforts have been made to improve the

efficiency of the power method. Notable improved techniques of

the power method include block matrix elimination [22, 34], Cheby-

shev polynomial speedup [8, 9], and core-tree decomposition [33].

There also exist studies [45] to optimize forward push by combin-

ing it with the power method. Those deterministic algorithms can

achieve a high precision, but they often require considerable time

overheads, which is unacceptable for processing online PageRank

queries on large graphs.

Among the extensive studies on PageRank computation, ones

that are most related to our work are approximate algorithms. Most

of them are based on the 𝛼-random walk sampling. [2, 30] directly

applied the 𝛼-random walk sampling to estimate PageRank central-

ity. Recently, Lofgren et al. [31] proposed a bidirectional method to

improve the efficiency of 𝛼-random walk sampling by combining

it with forward push. Following such a bidirectional technique,

several advanced methods [28, 39, 42, 45] were also proposed to fur-

ther improve the efficiency of the 𝛼-random walk sampling method.

However, all of these studies focus mainly on optimizing the for-

ward push procedure, and little optimization has been done on the

Monte Carlo sampling. More recently, spanning forests based sam-

pling technique was proposed in [27], which combines spanning

forests sampling with forward push. Such a spanning forests based

sampling technique performs very well on undirected graphs with

a small 𝛼 . However, on directed graphs, the spanning forests based

sampling technique is still inefficient when 𝛼 is small. Moreover,

there still lacks a formal comparison between 𝛼-random walk sam-

pling based methods and spanning forests sampling based methods.

In this paper, we provide a formal comparison between these two

Monte Carlo techniques and develop two novel variance reduction

techniques to improve these Monte Carlo methods.

In addition, it is worth mentioning that there exist many other

studies on the variants of PageRank computation problems, such

as single target personalized PageRank query [32, 37, 40], Top-k

personalized PageRank query [3, 12–14, 18, 43], PageRank com-

putation on parallel [17, 20, 38] and distributed [16, 29] settings,

as well as PageRank computation on dynamic graphs [48–50]. All

these studies, however, are orthogonal to our work.

7 CONCLUSION
In this work, we develop two novel techniques to reduce the vari-

ances of the Monte Carlo estimators for personalized PageRank

(PPR) computation. Specifically, we first show that applying few

power iterations on two existing Monte Carlo estimators, including

both the 𝛼-random walk and the spanning forests based estima-

tors, can substantially reduce the variance of these two estimators.

Second, we also develop a progressive sampling technique which

utilizes the historical information of the former samples to fur-

ther reduce the variance of the Monte Carlo estimators. Equipped

with these two novel variance reduction techniques, we propose

several new and efficient algorithms for PPR computation. Exten-

sive experiments on 5 large real-life datasets show that the newly-

proposed algorithms significantly outperform the state-of-the-art

bidirectional algorithms, in terms of both computation time and

estimation accuracy.

REFERENCES
[1] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Partitioning

using PageRank Vectors. In FOCS. 475–486.
[2] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, and Natalia Osipova.

2007. Monte Carlo Methods in PageRank Computation: When One Iteration is

Sufficient. SIAM J. Numer. Anal. 45, 2 (2007), 890–904.
[3] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, Elena Smirnova, and

Marina Sokol. 2011. Quick Detection of Top-k Personalized PageRank Lists. In

WAW. Springer, 50–61.

[4] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predicting

and recommending links in social networks. In WSDM. 635–644.

[5] Pavel Berkhin. 2006. Bookmark-Coloring Approach to Personalized PageRank

Computing. Internet Math. 3, 1 (2006), 41–62.
[6] Soumen Chakrabarti. 2007. Dynamic personalized pagerank in entity-relation

graphs. In WWW. 571–580.

[7] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-

Rong Wen. 2020. Scalable Graph Neural Networks via Bidirectional Propagation.

In NIPS.

SIGMOD ’23, June 03–05, 2022, Woodstock, NY

[8] Mustafa Coskun, Ananth Grama, and Mehmet Koyutürk. 2016. Efficient Pro-

cessing of Network Proximity Queries via Chebyshev Acceleration. In KDD.
1515–1524.

[9] Mustafa Coskun, Ananth Grama, and Mehmet Koyutürk. 2018. Indexed Fast

Network Proximity Querying. VLDB 11, 8 (2018), 840–852.

[10] Chris H. Q. Ding, Xiaofeng He, Parry Husbands, Hongyuan Zha, and Horst D.

Simon. 2003. PageRank: HITS and a Unified Framework for Link Analysis. In

SDM. 249–253.

[11] François Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. 2007.

Random-Walk Computation of Similarities between Nodes of a Graph with

Application to Collaborative Recommendation. IEEE Trans. Knowl. Data Eng. 19,
3 (2007), 355–369.

[12] Yasuhiro Fujiwara, Makoto Nakatsuji, Makoto Onizuka, and Masaru Kitsuregawa.

2012. Fast and Exact Top-k Search for Random Walk with Restart. VLDB (2012),

442–453.

[13] Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima, and

Makoto Onizuka. 2013. Efficient ad-hoc search for personalized PageRank. In

SIGMOD. 445–456.
[14] Yasuhiro Fujiwara, Makoto Nakatsuji, Takeshi Yamamuro, Hiroaki Shiokawa, and

Makoto Onizuka. 2012. Efficient personalized pagerank with accuracy assurance.

In KDD. 15–23.
[15] David F. Gleich. 2015. PageRank Beyond theWeb. SIAM Rev. 57, 3 (2015), 321–363.
[16] Tao Guo, Xin Cao, Gao Cong, Jiaheng Lu, and Xuemin Lin. 2017. Distributed Algo-

rithms on Exact Personalized PageRank. In SIGMOD, Semih Salihoglu, Wenchao

Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). 479–494.

[17] Wentian Guo, Yuchen Li, Mo Sha, and Kian-Lee Tan. 2017. Parallel Personalized

Pagerank on Dynamic Graphs. VLDB 11, 1 (2017), 93–106.

[18] Manish S. Gupta, Amit Pathak, and Soumen Chakrabarti. 2008. Fast algorithms

for topk personalized pagerank queries. In WWW. 1225–1226.

[19] Taher H. Haveliwala. 2002. Topic-sensitive PageRank. In WWW. 517–526.

[20] Guanhao Hou, Xingguang Chen, Sibo Wang, and Zhewei Wei. 2021. Massively

Parallel Algorithms for Personalized PageRank. VLDB 14, 9 (2021), 1668–1680.

[21] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In WWW.

271–279.

[22] Jinhong Jung, Namyong Park, Lee Sael, and U Kang. 2017. BePI: Fast andMemory-

Efficient Method for Billion-Scale Random Walk with Restart. In SIGMOD. 789–
804.

[23] Heung-Nam Kim and Abdulmotaleb El-Saddik. 2011. Personalized PageRank

vectors for tag recommendations: inside FolkRank. In Proceedings of the 2011
ACM Conference on Recommender Systems. 45–52.

[24] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In

ICLR.
[25] Amy Nicole Langville and Carl Dean Meyer. 2006. Google’s PageRank and beyond

- the science of search engine rankings. Princeton University Press.

[26] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[27] Meihao Liao, Rong-Hua Li, Qiangqiang Dai, and Guoren Wang. 2022. Efficient

Personalized PageRank Computation: A Spanning Forests Sampling Based Ap-

proach. In SIGMOD2. 2048–2061.
[28] Dandan Lin, Raymond Chi-Wing Wong, Min Xie, and Victor Junqiu Wei. 2020.

Index-Free Approach with Theoretical Guarantee for Efficient Random Walk

with Restart Query. In ICDE. 913–924.
[29] Wenqing Lin. 2019. Distributed Algorithms for Fully Personalized PageRank on

Large Graphs. In WWW. 1084–1094.

[30] Qin Liu, Zhenguo Li, John C. S. Lui, and Jiefeng Cheng. 2016. PowerWalk: Scalable

Personalized PageRank via Random Walks with Vertex-Centric Decomposition.

In CIKM. 195–204.

[31] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2016. Personalized PageR-

ank Estimation and Search: A Bidirectional Approach. In WSDM. 163–172.

[32] Peter Lofgren and Ashish Goel. 2013. Personalized PageRank to a Target Node.

CoRR abs/1304.4658 (2013).

[33] Takanori Maehara, Takuya Akiba, Yoichi Iwata, and Ken-ichi Kawarabayashi.

2014. Computing Personalized PageRank Quickly by Exploiting Graph Structures.

VLDB 7, 12 (2014), 1023–1034.

[34] Kijung Shin, Jinhong Jung, Lee Sael, and U Kang. 2015. BEAR: Block Elimination

Approach for Random Walk with Restart on Large Graphs. In SIGMOD, Timos K.

Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). 1571–1585.

[35] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W.

Mahoney. 2016. Parallel Local Graph Clustering. VLDB (2016), 1041–1052.

[36] Alastair J Walker. 1974. New fast method for generating discrete random numbers

with arbitrary frequency distributions. Electronics Letters 8, 10 (1974), 127–128.
[37] Hanzhi Wang, Zhewei Wei, Junhao Gan, Sibo Wang, and Zengfeng Huang. 2020.

Personalized PageRank to a Target Node, Revisited. In KDD. 657–667.
[38] Runhui Wang, Sibo Wang, and Xiaofang Zhou. 2019. Parallelizing approximate

single-source personalized PageRank queries on shared memory. VLDB 28, 6

(2019), 923–940.

[39] SiboWang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 2016. HubPPR:

Effective Indexing for Approximate Personalized PageRank. VLDB 10, 3 (2016),

205–216.

[40] Sibo Wang and Yufei Tao. 2018. Efficient Algorithms for Finding Approximate

Heavy Hitters in Personalized PageRanks. In SIGMOD. 1113–1127.
[41] Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei, Wenqing

Lin, Yin Yang, and Nan Tang. 2019. Efficient Algorithms for Approximate Single-

Source Personalized PageRank Queries. TODS (2019), 18:1–18:37.
[42] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA:

Simple and Effective Approximate Single-Source Personalized PageRank. In KDD.
505–514.

[43] Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong

Wen. 2018. TopPPR: Top-k Personalized PageRank Queries with Precision Guar-

antees on Large Graphs. In SIGMOD. 441–456.
[44] David Bruce Wilson. 1996. Generating Random Spanning Trees More Quickly

than the Cover Time. In STOC.
[45] Hao Wu, Junhao Gan, Zhewei Wei, and Rui Zhang. 2021. Unifying the Global and

Local Approaches: An Efficient Power Iteration with Forward Push. In SIGMOD.
1996–2008.

[46] Xiao-Ming Wu, Zhenguo Li, Anthony Man-Cho So, John Wright, and Shih-Fu

Chang. 2012. Learning with Partially Absorbing Random Walks. In NIPS. 3086–
3094.

[47] Minji Yoon, Jinhong Jung, and U Kang. 2018. TPA: Fast, Scalable, and Accurate

Method for Approximate Random Walk with Restart on Billion Scale Graphs. In

ICDE. 1132–1143.
[48] Hongyang Zhang, Peter Lofgren, and Ashish Goel. 2016. Approximate Personal-

ized PageRank on Dynamic Graphs. In KDD. ACM, 1315–1324.

[49] Junchao Zhang, Junjie Chen, Jiancheng Song, and Rong-Xiang Zhao. 2013. Monte

Carlo Based Personalized PageRank on Dynamic Networks. Int. J. Distributed
Sens. Networks 9 (2013).

[50] Fanwei Zhu, Yuan Fang, Kevin Chen-Chuan Chang, and Jing Ying. 2013. Incre-

mental and Accuracy-Aware Personalized PageRank through Scheduled Approx-

imation. VLDB 6, 6 (2013), 481–492.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic PPR Computation Techniques
	2.2 The State-of-the-art Solutions

	3 New -random walk estimators
	3.1 Variance Analysis of -RW Estimator
	3.2 Variance Reduction by Power Iterations
	3.3 Variance Reduction Using Former Samples

	4 New spanning forests estimators
	4.1 Variance Analysis of SF Based Estimators
	4.2 Reducing Variance by Power Iterations
	4.3 Reducing Variance Using Former Samples

	5 Experiments
	5.1 Experimental Setup
	5.2 Comparing -RW and SF based Estimators
	5.3 Results of Single-source PPR Query
	5.4 Results of PageRank Computation
	5.5 Comparison with High-precision Algorithm
	5.6 Results with Relative Error Guarantee
	5.7 Results of PPR Computation with Random
	5.8 Results of Varying Parameters
	5.9 Comparing Various Power Procedures
	5.10 Summary of findings

	6 Related Work
	7 Conclusion
	References

