
Efficient Personalized PageRank Computation: A Spanning
Forests Sampling Based Approach

Meihao Liao
Beijing Institute of Technology

Beijing, China
mhliao@bit.edu.cn

Ronghua Li
Beijing Institute of Technology

Beijing, China
lironghuabit@126.com

Qiangqiang Dai
Beijing Institute of Technology

Beijing, China
qiangd66@gmail.com

Guoren Wang
Beijing Institute of Technology

Beijing, China
wanggrbit@126.com

ABSTRACT
Computing the personalized PageRank vector is a fundamental prob-
lem in graph analysis. In this paper, we propose several novel al-
gorithms to efficiently compute the personalized PageRank vector
with a decay factor 𝛼 based on an interesting connection between
the personalized PageRank values and the weights of random span-
ning forests of the graph. Such a connection is derived based on a
newly-developed matrix forest theorem on graphs. Based on this,
we present an efficient spanning forest sampling algorithm via sim-
ulating loop-erased 𝛼-random walks to estimate the personalized
PageRank vector. Compared to all existing methods, a striking fea-
ture of our approach is that its performance is insensitive w.r.t. (with
respect to) the parameter 𝛼 . As a consequence, our algorithm is often
much faster than the state-of-the-art algorithms when 𝛼 is small,
which is the demanding case for many graph analysis tasks. We
show that our technique can significantly improve the efficiency
of the state-of-the-art algorithms for answering two well-studied
personalized PageRank queries, including single source query and
single target query. Extensive experiments on five large real-world
graphs demonstrate the efficiency of the proposed method.

ACM Reference Format:
Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang. 2022. Effi-
cient Personalized PageRank Computation: A Spanning Forests Sampling
Based Approach. In Proceedings of SIGMOD ’22: International Confer-
ence on Management of Data (SIGMOD ’22). ACM, New York, NY, USA,
20 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Given a graph 𝐺 = (𝑉 , 𝐸), two nodes 𝑠, 𝑡 ∈ 𝑉 , and a decay factor 𝛼 ,
the Personalized PageRank (PPR) 𝜋 (𝑠, 𝑡) is defined as the probability
that a random surfer starts from 𝑠 stops at 𝑡 when applying an 𝛼-
random walk, where a random surfer randomly stops at the current
node with probability 𝛼 or travels to a neighbor of the current node

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

with probability 1 − 𝛼 . Clearly, by this definition, the PPR value
𝜋 (𝑢, 𝑣) naturally measures the importance of node 𝑡 w.r.t. (with
respect to) 𝑠. That is, after randomly surfing, if 𝑠 stops at 𝑡 with a high
probability, then 𝑡 is important to 𝑠. Based on such a nice property,
PPR has been widely used in web search related applications [28].

However, a recent trend is to employ PPR for many graph analysis
tasks, such as graph clustering [4, 40], graph embedding [51], and
graph neural networks [13]. In particular, PPR values can express
the graph structure information by considering all paths between two
nodes, which can be viewed as a type of information propagation
procedure across the graph [42]. This new trend brings significant
efficiency and effectiveness improvement to graph analysis tasks,
but also introduces new computational challenges.

The new applications of PPR in graph analysis often require
a small decay factor 𝛼 . For example, for local graph clustering
application, the optimal parameter setting for the decay factor is 𝛼 =

0.01 as reported in [40]. The same optimal parameter setting of 𝛼 can
also be found in graph neural network application [13]. The reason
could be that with a small 𝛼 , the 𝛼-random walk can explore a large
portion of the graph, thus can obtain more information compared to
the case with a large 𝛼 . But unfortunately, all existing algorithms for
computing the PPR values with a small 𝛼 (e.g., 𝛼 = 0.01) are not
very efficient on large graphs, which motivates us to develop more
efficient algorithms to handle the small 𝛼 case.

Specifically, previous PPR computation methods can be divided
into two categories, including deterministic methods [3, 4, 10, 28]
and Monte Carlo algorithms [7, 32]. In our case, of particular interest
is the Monte Carlo algorithm. To estimate the 𝜋 (𝑠, 𝑡) value, a classic
Monte Carlo algorithm first simulates 𝛼-random walks from 𝑠 and
then counts the fraction of walks that terminates at 𝑡 as an estimation.
However, the major drawback of this method is that it only cares
about the end-node of each random walk, and other nodes in the
random walk are totally ignored. Moreover, the efficiency of such a
method is heavily dependent on the decay factor 𝛼 . For a small 𝛼 ,
such a classic Monte Carlo method is inefficient, because it often
takes a long time to simulate an 𝛼-random walk in this case.

To tackle the issues, we propose a novel solution based on an
interesting connection between PPR and random spanning forests
of the graph. We first establish a novel PageRank matrix forest
theorem, which gives a new combinatorial explanation of PPR value
𝜋 (𝑠, 𝑡) as the probability that 𝑠 is rooted in 𝑡 in a rooted random

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang

spanning forest.1 Such a combinatorial explanation motivates us to
design efficient PPR computation algorithms by sampling spanning
forests. To this end, we propose a new loop-erased 𝛼-random walk
technique to generate random spanning forests via extending the
classic Wilson algorithm [48]. Compared to the previous methods,
our spanning forest sampling based technique has several appealing
features: (1) each step in the 𝛼-random walk except loops provides
valuable information for estimating PPR values, and (2) the expected
running time of our technique will not grow rapidly as 𝛼 decreases,
thus it is insensitive w.r.t. 𝛼 .

We apply the newly-developed technique to improve previous
algorithms for answering two PPR queries: single source PPR query
and single target PPR query. For the single source PPR query, the
state-of-the-art algorithm is a two-stage algorithm [46, 49] that com-
bines deterministic forward push and Monte Carlo. Although several
optimizations are made to accelerate the deterministic forward push
stage [31, 49], there is little work focusing on optimizing the Monte
Carlo stage. In the Monte Carlo stage, all these methods just sim-
ply simulates 𝛼-random walk, which is inefficient when 𝛼 is small.
We show that our technique can improve the Monte Carlo stage by
replacing the 𝛼-random walk sampling with the proposed random
spanning forest sampling. Note that our random spanning forest
sampling technique is orthogonal to those optimizations made on
deterministic forward push [31, 49], thus they can also be applied
to optimize our solutions. For the single target PPR query, the state-
of-the-art algorithm is the backward push algorithm [3]. Similarly,
the backward push algorithm is also slow when 𝛼 is small especially
for high-degree nodes. To overcome this issue, we also propose a
two-stage algorithm combining backward push and sampling span-
ning forests. We show that our algorithm can achieve a relative error
guarantee in theory. Finally, we conduct extensive experiments using
7 large real-world graphs to evaluate our algorithms. The results
show that (1) for the single source PPR query, our best algorithm
can achieve one order of magnitude speedup over the state-of-the-art
algorithm [49] on large graphs when 𝛼 = 0.01, and (2) for the single
target PPR query, our best algorithm is around 3× faster than the
state-of-the-art algorithm. To summarize, the main contributions of
this paper are as follows.

New theoretical results. We develop three novel matrix forest theo-
rems, based on which the PPR value 𝜋 (𝑠, 𝑡) between two nodes 𝑠 and
𝑡 can be explained as the probability that 𝑠 is rooted in 𝑡 in a random
spanning forest. We show that the proposed matrix forest theorems
can be applied to develop an efficient algorithm to estimate the PPR
values by sampling spanning forests in a graph. We believe that such
a novel combinatorial explanation for the PPR values could be of
independent interest.

New algorithms for PPR queries. We first propose a new algo-
rithm to sample spanning forests based on a loop-erased 𝛼-random
walk technique. We show that such a loop-erased 𝛼-random walk
technique is insensitive w.r.t. 𝛼 . Based on this technique, we develop
a new two-stage algorithm which combing forward push (backward
push) and spanning forest sampling to efficiently answer the single
source (target) PPR query.

1A rooted spanning forest partitions the graph into several connected components (each
tree is a connected component). If a node 𝑠 is located in a tree that has a node 𝑡 as its
root, we call that node 𝑠 is rooted in 𝑡 .

Extensive experiments. We conduct extensive experiments using
7 real-world graphs to evaluate the efficiency of the proposed algo-
rithms. The results show that our algorithms significantly outperform
the state-of-the-art algorithms on all datasets. For reproducibility
purpose, the source code of this paper is released at an anonymous
link https://anonymous.4open.science/r/RSFPPR-5767.

2 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸,𝑊) be a weighted graph, where 𝑉 (𝑛 = |𝑉 |) is a set
of vertices, 𝐸 (𝑚 = |𝐸 |) is a set of edges, and 𝑤𝑢𝑣 ∈𝑊 denotes the
weight of an edge 𝑒 = (𝑢, 𝑣). Denote by 𝐴, the adjacency matrix of
𝐺 with 𝐴𝑢𝑣 = 𝑤𝑢𝑣 if (𝑢, 𝑣) ∈ 𝐸, 𝐴𝑢𝑣 = 0 otherwise. Let 𝐿 = 𝐷 − 𝐴
be the Laplacian matrix of 𝐺 , where 𝐷 is a diagonal matrix with
each entry 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 . For a node 𝑢 ∈ 𝑉 , the weighted degree of

𝑢, denoted by 𝑑𝑢 , is equal to 𝐷𝑢𝑢 . If the graph is unweighted, the
weighted degree is exactly equal to the number of neighbors. For
easy understanding of our results, we assume that the graph 𝐺 is
undirected in the following sections. It is important to note that the
main technique and all theoretical results presented in Section 3 and
Section 4 still work for directed graphs.

Given a source node 𝑠, a target node 𝑡 , and a decay factor 𝛼 , the
personalized PageRank (PPR) of 𝑡 w.r.t. 𝑠, denote by 𝜋 (𝑠, 𝑡), is the
probability that an 𝛼-random walk starting from 𝑠 terminates at 𝑡 .
Here an 𝛼-random walk is a random walk where in each step the
random walk stops at the current node with probability 𝛼 and travels
to a random neighbor with probability 1 − 𝛼 . With this definition,
we mainly focus on two types of personalized PPR computation
problem in this paper.

Given a source node 𝑠, the single source PPR query is to compute
𝜋 (𝑠, 𝑣) for each node 𝑣 ∈ 𝑉 . The answer of this query is a row vector
𝑝𝑠 ∈ 𝑅1×𝑛 . Similarly, given a target node 𝑡 , the single target PPR
query is to compute 𝜋 (𝑣, 𝑡) for each 𝑣 ∈ 𝑉 , and the answer of this
query is a column vector 𝑝𝑡 ∈ 𝑅𝑛×1. Below, we focus mainly on
describing the concepts of single source PPR query, and similar
concepts can also be applied for the single target PPR query.

Let 𝑃 = 𝐷−1𝐴 be the probability transition matrix where each row
is normalized by the weighted degree. The PPR vector 𝑝𝑠 , which
is PPR value of all nodes w.r.t. the source node 𝑠, satisfying the
following linear equation

𝑝𝑠 = 𝛼𝑒𝑠 + (1 − 𝛼)𝑝𝑠 · 𝑃, (1)

where 𝑒𝑠 ∈ 𝑅1×𝑛 is the unit vector with 1 on the 𝑠-th element and 0
on others. Then, we have

𝜋 (𝑠, 𝑣) = 𝑝𝑠 [𝑣] = 𝛼 [𝐼 − (1 − 𝛼)𝑃]−1
𝑠𝑣 . (2)

Note that Eq. (1) can be easily reformulated as an equivalent
linear system:

𝑝𝑠 (𝐿 + 𝛽𝐷) = 𝛽𝑒𝑠 , (3)
where 𝛽 = 𝛼/(1 − 𝛼), 𝑝𝑠 = 𝑝𝑠𝐷

−1 and 𝐿 is the Laplacian matrix.
Based on Eq. (3), we can easily derive that

𝜋 (𝑠, 𝑣) = 𝑝𝑠 [𝑣] = [(𝐿 + 𝛽𝐷)−1𝛽𝐷]𝑠𝑣 . (4)

Based on Eq. (4), we define the 𝛽-Laplacian matrix as follows.

Definition 2.1. (𝛽-Laplacian) Given a graph 𝐺 = (𝑉 , 𝐸) and its
Laplacian matrix 𝐿 = 𝐷 − 𝐴. Let 𝛼 be the decay factor of the 𝛼-
random walk. The 𝛽-Laplacian of 𝐺 with parameter 𝛼 is defined as
𝐿𝛽 = (𝛽𝐷)−1 (𝐿 + 𝛽𝐷), where 𝛽 = 𝛼

1−𝛼 .

https://anonymous.4open.science/r/RSFPPR-5767

Efficient Personalized PageRank Computation: A Spanning Forests Sampling Based Approach SIGMOD ’22, June 12–17, 2022, Philadelphia, PA

Clearly, by Eq. (4) and Definition 2.1, we have 𝜋 (𝑠, 𝑡) = (𝐿−1
𝛽
)𝑠𝑡 .

Thus, answering the PPR queries is equivalent to computing the
inverse of the 𝛽-Laplacian matrix. Clearly, the answer of the single
source query is a row of 𝐿−1

𝛽
, while the answer of the single target

query is a column of 𝐿−1
𝛽

. Computing both the single source and
single target queries are often very costly for large graphs, thus many
approximation algorithms with a relative error guarantee have been
proposed in the literature [31, 46, 49]. Below, we formally define
such two approximate query processing problems which will be
served as two applications of the proposed technique.

Definition 2.2. (Approximate single source PPR query) Given a
relative error threshold 𝜖 > 0, a PPR threshold 𝜇 and a source node 𝑠,
an approximate single source PPR query problem aims to compute
an estimation �̃� (𝑠, 𝑣) for each node 𝑣 ∈ 𝑉 with 𝜋 (𝑠, 𝑣) ≥ 𝜇 such that
|�̃� (𝑠, 𝑣) − 𝜋 (𝑠, 𝑣) | ≤ 𝜖𝜋 (𝑠, 𝑣) with a low failure probability 𝑝 𝑓 .

Definition 2.3. (Approximate single target PPR query) Given an
relative error threshold 𝜖 > 0, a PPR threshold 𝜇 and a target node 𝑡 ,
an approximate single target PPR query problem aims to compute
an estimation �̃� (𝑣, 𝑡) for each node 𝑣 ∈ 𝑉 with 𝜋 (𝑣, 𝑡) ≥ 𝜇 such that
|�̃� (𝑣, 𝑡) − 𝜋 (𝑣, 𝑡) | ≤ 𝜖𝜋 (𝑣, 𝑡) with a low failure probability 𝑝 𝑓 .

The two parameters, 𝜇 and 𝑝 𝑓 , are used to control the estimation
quality. The parameter 𝜇 is a threshold such that we can achieve a
relative error guarantee if the exact PPR value exceeds 𝜇; 𝑝 𝑓 is the
failure probability that the algorithm will produce a wrong result.
Following previous studies [31, 46, 49], we set 𝜇 = 1

𝑛 and 𝑝 𝑓 = 1
𝑛

to guarantee a relatively precise result. With these settings, 𝜇 and 𝑝 𝑓
are both small enough to achieve a high estimating precision.

3 PAGERANK MATRIX FOREST THEOREM
The classic matrix tree (or matrix forest) theorem connects the num-
ber of spanning trees (or forests) to the determinant of the Laplacian
matrix of a graph which is perhaps the most well-known result in
spectral graph theory [16]. In this section, we establish a novel matrix
forest theorem, referred to as the PageRank matrix forest theorem,
based on the 𝛽-Laplacian matrix defined in Definition 2.1.

3.1 New matrix forest theorems
For a forest 𝐹 , the weight of 𝐹 is defined as the product of all weights
of edges in 𝐹 , that is 𝑤 (𝐹) = ∏

𝑒∈𝐹 𝑤𝑒 . For unweighted graphs,
we simply have 𝑤𝑒 = 1, and thus 𝑤 (𝐹) is also equal to 1 for all 𝐹 .
A spanning forest of 𝐺 is a forest including all nodes in 𝐺 . Note
that a forest may have several connected tree components. A rooted
spanning forest is a spanning forest where we specify one node as
a root in each connected component. For convenience, if a node
𝑠 belongs to a tree T (each tree is a connected component in the
forest) which has a node 𝑡 as its root, we say that 𝑠 is rooted in 𝑡 in
the spanning forest. We denote 𝜌 (𝐹) as the set of roots of 𝐹 . The
following result shows a connection between the determinant of 𝐿𝛽
and the weights of the rooted spanning forests.

THEOREM 3.1. (PageRank matrix forest theorem) Given a graph
𝐺 = (𝑉 , 𝐸,𝑊), for 𝛽 ∈ (0,∞), the determinant of 𝐿𝛽 is related to
the rooted spanning forests as follows:

𝑑𝑒𝑡 (𝐿𝛽) =
1

𝛽𝑛
∏
𝑢∈𝑉

𝑑𝑢

∑
𝐹 ∈F

𝑤 (𝐹)
∏

𝑢∈𝜌 (𝐹)
𝛽𝑑𝑢 ,

where F denotes the set of all rooted spanning forests in 𝐺 .

PROOF. For a rooted spanning forest 𝐹 , we define its weight as
the product of all edge weights divided by the product of 𝛽𝑑𝑢 for
all node 𝑢 that is not a root. With this definition, the above theorem
states that 𝑑𝑒𝑡 (𝐿𝛽) equals the sum of weights of all rooted spanning
forests. Clearly, to prove the theorem, a direct way is to expand
the determinant to see whether it is equal to the sum of weights
of all rooted spanning forests. Below, we show that with a proper
expansion, there is a one-to-one mapping between each term in the
determinant and each rooted spanning forest; and each term in the
determinant exactly equals the weight of the corresponding rooted
spanning forest.

To achieve this, we expand the determinant by Leibniz formula
and the resulting terms are related to the subgraphs of 𝐺 . We can
prove that terms correspond to a subgraph containing loops have the
same number of opposite signs, thus will be eliminated in the final
result. All remaining terms correspond to the subgraphs that have no
loop, which are exactly the rooted spanning forests. To help readers
easily follow the proof argument, we give an intuitive example which
is illustrated in Fig. 1. In Fig. 1(a), there is a simple graph 𝐺 with 3
nodes. We can easily derive that 𝐺 has 8 rooted spanning forests in
total as shown in Fig. 1(b). In Fig. 1(b), the green nodes denote the
roots of the spanning forest and the weight of each rooted spanning
forest is also given under each subgraph. If there is no edge in
a rooted spanning forest, we set the weight of the corresponding
rooted spanning forest as 1. As a result, we need to show: 𝑑𝑒𝑡 (𝐿𝛽) =
1 + 𝑤12

𝛽𝑑2
+ 𝑤31

𝛽𝑑3
+ 𝑤21𝑤31
(𝛽𝑑2) (𝛽𝑑3) +

𝑤12𝑤31
(𝛽𝑑1) (𝛽𝑑3) +

𝑤12
𝛽𝑑1
+ 𝑤31

𝛽𝑑1
+ 𝑤13𝑤21
(𝛽𝑑1) (𝛽𝑑2) .

By definition, 𝐿𝛽 = (𝛽𝐷)−1 (𝐿 + 𝛽𝐷), and we have 𝑑𝑒𝑡 (𝐿𝛽) =
𝑑𝑒𝑡 (𝛽𝐷)−1𝑑𝑒𝑡 (𝐿 + 𝛽𝐷) = 𝑑𝑒𝑡 (𝐿 + 𝛽𝐷)/(𝛽𝑛 ∏𝑢∈𝑉 𝑑𝑢). Next, we
consider the matrix 𝑀 = 𝐿 + 𝛽𝐷 . Let𝑚𝑖 𝑗 denote the 𝑖, 𝑗-th element
of 𝑀 . Note that this matrix is almost the same as the Laplacian
matrix 𝐿 = 𝐷 −𝐴, with each non-diagonal item𝑚𝑖 𝑗 = −𝑤𝑖 𝑗 ; the only
difference is that each diagonal term is 𝑑𝑢 + 𝛽𝑑𝑢 instead of 𝑑𝑢 for all
𝑢 ∈ 𝑉 . For example, the 𝐿 + 𝛽𝐷 matrix of the graph 𝐺 in Fig. 1 is:

𝐿 + 𝛽𝐷 =
©«
𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 0
𝑚31 0 𝑚33

ª®¬
=
©«
𝛽𝑑1 +𝑤12 +𝑤13 −𝑤12 −𝑤13

−𝑤21 𝛽𝑑2 +𝑤21 0
−𝑤31 0 𝛽𝑑3 +𝑤31 .

ª®¬ (5)

Next, we expand the determinant 𝑑𝑒𝑡 (𝐿 + 𝛽𝐷), and the complete
expansion procedure of the running example in Fig. 1 are given as

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang

follows:

𝑑𝑒𝑡 (𝐿 + 𝛽𝐷)
= (−1)𝜎1𝑚11𝑚22𝑚33 + (−1)𝜎3𝑚12𝑚21𝑚33 + (−1)𝜎4𝑚13𝑚22𝑚31

(6)

= (−1)𝜎1 (𝛽𝑑1 +𝑤12 +𝑤13) (𝛽𝑑2 +𝑤21) (𝛽𝑑3 +𝑤31)
+ (−1)𝜎3 (−𝑤21) (−𝑤12) (𝛽𝑑3 +𝑤31)
+ (−1)𝜎4 (−𝑤13) (−𝑤31) (𝛽𝑑2 +𝑤21) (7)

= (−1)𝜎1 (𝛽𝑑1) (𝛽𝑑2) (𝛽𝑑3) + (−1)𝜎1 (𝛽𝑑1)𝑤21 (𝛽𝑑3)
+ (−1)𝜎1 (𝛽𝑑1) (𝛽𝑑2)𝑤31 + (−1)𝜎1 (𝛽𝑑1)𝑤21𝑤31

+ (−1)𝜎1𝑤12 (𝛽𝑑2) (𝛽𝑑3) + (−1)𝜎1𝑤12𝑤21 (𝛽𝑑3)
+ (−1)𝜎1𝑤12 (𝛽𝑑2)𝑤31 + (−1)𝜎1𝑤12𝑤21𝑤31

+ (−1)𝜎1𝑤13 (𝛽𝑑2) (𝛽𝑑3) + (−1)𝜎1𝑤13𝑤21 (𝛽𝑑3)
+ (−1)𝜎1𝑤13 (𝛽𝑑2)𝑤31 + (−1)𝜎1𝑤13𝑤21𝑤31

+ (−1)𝜎3 (−𝑤12) (−𝑤21) (𝛽𝑑3) + (−1)𝜎3 (−𝑤12) (−𝑤21)𝑤31

+ (−1)𝜎4 (−𝑤13) (𝛽𝑑2) (−𝑤31) + (−1)𝜎4 (−𝑤13)𝑤21 (−𝑤31) (8)

= (𝛽𝑑1) (𝛽𝑑2) (𝛽𝑑3) + (𝛽𝑑1)𝑤21 (𝛽𝑑3)
+ (𝛽𝑑1) (𝛽𝑑2)𝑤31 + (𝛽𝑑1)𝑤21𝑤31

+𝑤12 (𝛽𝑑2) (𝛽𝑑3) +𝑤12 (𝛽𝑑2)𝑤31 +𝑤13 (𝛽𝑑2) (𝛽𝑑3) +𝑤13𝑤21 (𝛽𝑑3)
(9)

Recall that the Leibniz formula expresses the determinant of a matrix
in terms of permutations of the matrix elements:

𝑑𝑒𝑡 (𝑀) =
∑
𝜎

𝑠𝑔𝑛(𝜎)
𝑛∏

𝑘=1
𝑚𝑘,𝜎 (𝑘) . (10)

For convenience, we refer to the right hand side of Eq. (10) as
𝐴1, which is, Eq. (6) in the running example. A permutation is an
arrangement of elements in an arbitrary ordering. In graph theory, it
is well-known that a permutation 𝜎 can be decomposed into loops;
and it has a unique correspondence to a linear factor [41], which
consists of each arc (𝑘, 𝜎 (𝑘)). Fig. 2(a) and (b) are two examples of
permutations and the corresponding linear factors. Basically, there
are two types of loops: self-loops and non-trivial loops. The sign
of a permutation 𝜎 , denoted by 𝑠𝑔𝑛(𝜎), is given by evenness of 𝑛
minus the number of loops 𝑙 . Let 𝑙𝑠 be the number of self-loops,
𝑙𝑛 be the number of non-self loops. Since each diagonal element
in 𝑀 has positive sign and each non-zero non-diagonal element
has negative sign, the sign of each term in Eq. (10) is determined
by (−1) (𝑛−𝑙𝑠)+(𝑛−𝑙) = (−1)𝑙−𝑙𝑠 = (−1)𝑙𝑛 , which is the number of
nontrivial loops. The permutations and the signs of the running
example is illustrated in Fig. 1(c). As there is no edge between 𝑣2
and 𝑣3, there are only 3 out of 6 terms in the expanded result, see
Eq. (6).

The second step is to substitute each diagonal element, which
corresponds to a self-loop in a linear factor, in Eq. (10) with non-
diagonal elements using the following formula

𝑚𝑢𝑢 = 𝛽𝑑𝑢 + 𝑑𝑢 = 𝛽𝑑𝑢 +
∑
𝑣≠𝑢

|𝑚𝑢𝑣 |.

After substituting and removing parentheses, we will obtain a sum-
mation of several terms, which we refer to as 𝐴2 (also Eq. (8) in the
running example). Each term in 𝐴2 corresponds to a subgraph of 𝐺
with no self-loop. Notice that each term in the result in Eq. (8) is

written in the same order as each rooted spanning forest in Fig. 1(d)
w.r.t. the correspondence relation. To see this, suppose that there are
𝑠 self-loops on vertices 𝐿 = {𝑘1, · · · , 𝑘𝑠 } in a linear factor, then the
product of diagonal elements is

𝑠∏
𝑙=1
(𝛽𝑑𝑘𝑙 +

∑
𝑣≠𝑘𝑙

|𝑚𝑘𝑙 𝑣 |) .

After removing parentheses, each node 𝑘𝑙 ∈ 𝐿 will provide a term
which is either a term 𝑚𝑘𝑙 𝑣 (implying there is an out-going arc
(𝑘𝑙 , 𝑣)) or a term 𝛽𝑑𝑘𝑙 (implying there is no out-going arc from
𝑘𝑙). If the term 𝛽𝑑𝑘𝑙 is provided, we will mark 𝑘𝑙 as a root node.
For example, Fig. 2(c) shows a possible term that we may obtain,
where 𝑣3 provides the 𝛽𝑑3 term and is marked as a root, other three
nodes have out-going arcs (𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣4, 𝑣1). Note that the
left acyclic subgraph in Fig. 2(c) must be produced by self loops.
Thus, the products of self-loops will produce either nontrivial loops
or acyclic subgraphs in which a node is marked as a root. This
establishes the correspondence between a subgraph that has no self-
loop and a term in 𝐴2.

The third step is to reduce similar terms in 𝐴2. Note that in 𝐴2,
similar terms with positive sign and terms with negative sign will
be added to zero. After removing such zero terms from 𝐴2, we
can obtain a simplified term called 𝐴3 (also Eq. (9) in the running
example). We will see that any subgraph with nontrivial loops will
have the same number of terms with positive sign as that of terms
with negative signs in 𝐴2, which will be absent in 𝐴3. To see this,
any nontrivial loops in 𝐴2 comes from two cases: (1) the original
linear factor, and (2) produced by self loops. Suppose that there are
𝑝 nontrivial loops in one term in 𝐴2. Then, if 𝑘 of the 𝑝 loops come
from a linear factor, then there will be 𝐶𝑘

𝑝 such similar terms with
sign (−1)𝑘 (recall that the sign of each term in 𝐴1 is determined by
the evenness of the number of nontrivial loops in a linear factor).
Thus, the coefficient of all such terms is equal to

⌊𝑝/2⌋∑
𝑘=0

𝐶2𝑘
𝑝 −

⌊ (𝑝−1)/2⌋∑
𝑘=0

𝐶2𝑘+1
𝑝 =

𝑝∑
𝑞=0
(−1)𝑞𝐶𝑞

𝑣 = (1 − 1)𝑝 = 0.

The above equality follows by applying a binomial formula. As a
result, each final term in 𝐴3 has no loops which corresponds to a
spanning forest. Each connected component has one node marked as
a root. Thus, each spanning forest 𝐹 corresponds to a term in 𝐴3 with
weight 𝑤 (𝐹)∏𝑢∈𝜌 (𝐹) 𝛽𝑑𝑢 , which completes the proof. We can also
see that for each subgraph that has a loop (plot in red box in Fig. 1(d)),
the number of corresponding terms that has positive signs is equal
to the number of terms that has negative signs. After reducing the
same terms, we obtain the final 8 terms, which corresponds to 8
rooted spanning forests. Divided by 𝑑𝑒𝑡 (𝛽𝐷), each term is exactly
the weight of that rooted spanning forest. □

Based on Theorem 3.1, we can further develop two matrix forest
theorems based on the minors of the matrix 𝐿𝛽 as follows.

THEOREM 3.2. Given a graph 𝐺 = (𝑉 , 𝐸,𝑊), for 𝛽 ∈ (0,∞),
the determinant of the principle minor 𝐿 (𝑣)

𝛽
, obtained by deleting

the 𝑣-th row and column is related to the rooted spanning forests as

Efficient Personalized PageRank Computation: A Spanning Forests Sampling Based Approach SIGMOD ’22, June 12–17, 2022, Philadelphia, PA

V2

V1

V3

(a) 𝐺

V2

V1

V3

1
𝑤12

𝛽𝑑2

𝑤31
𝛽𝑑3

𝑤21𝑤31

(𝛽𝑑2)(𝛽𝑑3)

V2

V1

V3

V2

V1

V3

V2

V1

V3

𝑤12𝑤31
(𝛽𝑑1)(𝛽𝑑3)

𝑤12
𝛽𝑑1

𝑤31
𝛽𝑑1

𝑤13𝑤21

(𝛽𝑑1)(𝛽𝑑2)

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

(b) All rooted spanning forests of 𝐺 and their weights

v2

v1

v3 v2

v1

v3 v2

v1

v3 v2

v1

v3 v2

v1

v3 v2

v1

v3

1 2 3
1 2 3

1 2 3
1 3 2

1 2 3
2 1 3

1 2 3
3 2 1

1 2 3
3 1 2

1 2 3
2 3 1

𝜎1: 1 𝜎2:−1 𝜎3:−1 𝜎4:−1 𝜎5:−1 𝜎6:−1

(c) All 3-permutations and their signs

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

V2

V1

V3

+ +

++

(d) All terms after removing the parentheses

Figure 1: An intuitive example for proving Theorem 3.1. There
is a one-to-one mapping between the determinant expansion
terms and the rooted spanning forests. (a) An example graph
𝐺 and (b) all 8 rooted spanning forests of 𝐺 (green nodes are
roots). 𝑑𝑒𝑡 (𝐿𝛽) equals the sum of the weights of all rooted span-
ning forests, which are given under each subgraph. Figures (c)-
(d) illustrate the detailed proving procedure. Expand the deter-
minant, there are 16 terms. All terms that has a loop (in the
red box in (d)) will be absent in the final result. The remaining
terms correspond to the rooted spanning forests.

v1

v4

v3

v2

v6

v5

v7

1 2 3 4 5 6 7
2 3 4 1 6 7 5

(a)

1 2 3 4 5 6 7
2 3 4 1 5 6 7

v1

v4

v3

v2

v6

v5

v7

(b)

v1

v4

v3

v2

v6

v5

v7

(𝛽𝑑3)𝑚12𝑚23 𝑚41 𝑚56 𝑚67 𝑚75

(c)
Figure 2: Illustration of the concepts in the proof of Theo-
rem 3.1

follows:

𝑑𝑒𝑡 (𝐿 (𝑣)
𝛽
) = 1

𝛽𝑛
∏
𝑢∈𝑉

𝑑𝑢

∑
𝐹 ∈F𝑣

𝑤 (𝐹)
∏

𝑢∈𝜌 (𝐹)
𝛽𝑑𝑢 ,

where F𝑣 denotes the set of all rooted spanning forests in 𝐺 having
𝑣 as a root.

PROOF. We can use a similar argument as used in the proof of
Theorem 3.1 to prove this theorem. After deleting 𝑣-th row and col-
umn,𝑑𝑒𝑡 (𝐿 (𝑣)

𝛽
) = 𝑑𝑒𝑡 ((𝛽𝐷 (𝑣))−1)𝑑𝑒𝑡 ((𝐿+𝛽𝐷) (𝑣)) = 𝛽𝑑𝑣

𝛽𝑛
∏
𝑢∈𝑉

𝑑𝑢
𝑑𝑒𝑡 ((𝐿+

𝛽𝐷) (𝑣)). Next, we focus on the matrix 𝑑𝑒𝑡 ((𝐿 + 𝛽𝐷) (𝑣)). Note that
this matrix can also be expanded like Eq. (10). The only difference
is that there is no 𝑚𝑣, · term in the product. As a result, each term
corresponds to a linear factor that must have a self-loop on 𝑣 [38].
Then, the sign of each term still relates to the number of nontrivial
loops following the proof of Theorem 3.1. After that, we can also
substitute diagonal terms, remove parentheses and reduce similar
terms to prove the theorem. Note that there is an additional 𝛽𝑑𝑣 term
in the numerator of 𝑑𝑒𝑡 (𝛽𝐷 (𝑣))−1. We can multiply this term into
the weights. This is identical to the former proof where we choose
the 𝛽𝑑𝑣 in the 𝑣-th parentheses instead of any arc out-going from
𝑣 . Since all spanning forests with an out-going arc from 𝑣 will be
absent here, all final terms will correspond to one spanning forest in
which 𝑣 is marked as a root. □

THEOREM 3.3. Given a graph 𝐺 = (𝑉 , 𝐸,𝑊), for 𝛽 ∈ (0,∞),
given two distinct vertices 𝑢,𝑣 , the determinant of the minor 𝐿 (𝑢,𝑣)

𝛽
,

obtained by deleting the 𝑢-th row and 𝑣-th column is related to the
rooted spanning forests as follows:

𝑑𝑒𝑡 (𝐿 (𝑢,𝑣)
𝛽
) = 1

𝛽𝑛
∏
𝑖∈𝑉

𝑑𝑖

∑
𝐹 ∈F𝑣,𝑢

𝑤 (𝐹)
∏

𝑢∈𝜌 (𝐹)
𝛽𝑑𝑢 ,

where F𝑣,𝑢 denotes the set of all rooted spanning forests in 𝐺 in
which 𝑢 and 𝑣 are in the same connected component and 𝑢 is a root.

PROOF. After deleting 𝑢-th row and 𝑣-th column, 𝑑𝑒𝑡 (𝐿 (𝑢,𝑣)
𝛽
) =

𝑑𝑒𝑡 ((𝛽𝐷 (𝑢))−1)𝑑𝑒𝑡 ((𝐿 + 𝛽𝐷) (𝑢,𝑣)) = 𝛽𝑑𝑢
𝛽𝑛

∏
𝑖∈𝑉

𝑑𝑖
𝑑𝑒𝑡 ((𝐿 + 𝛽𝐷) (𝑢,𝑣)).

Next, we focus on the matrix 𝑑𝑒𝑡 ((𝐿 + 𝛽𝐷) (𝑢,𝑣)). This matrix can
also be expanded like Eq. (10). The only difference is that there is no
𝑚𝑢, · or 𝑚 ·,𝑣 term in the product. As a result, each term corresponds
to a linear factor that must have an arc (𝑢, 𝑣) [38]. The sign of each
term still relates to the number of nontrivial loops following the
previous proofs. Note that the arc (𝑢, 𝑣) must belong to a nontriv-
ial loop in a linear factor. Then, we can also substitute diagonal
terms, remove parentheses and reduce similar terms to prove the the-
orem. Note that there is an additional 𝛽𝑑𝑢 term in the numerator of
𝑑𝑒𝑡 ((𝛽𝐷 (𝑢))−1). We can multiply this term into the weights. There
is no term with an arc out-going from 𝑢, thus 𝑢 is marked as a root,
and 𝑣 must be included in that connected component. All final terms
will correspond to a spanning forest in which 𝑣 is rooted in 𝑢. This
completes the proof. □

Note that although we focus mainly on undirected graphs, all
results presented in the above theorems can be easily extended to
directed graphs by using the concept of diverging forests as used
in the traditional matrix forest theorem for directed graphs [1, 36].
Moreover, the extended results can also be proved by applying the
same arguments based on the Leibniz formula as we used in the
above theorems.

3.2 PPR computation by spanning forests
Recall that 𝜋 (𝑠, 𝑠) = (𝐿−1

𝛽
)𝑠𝑠 and 𝜋 (𝑠, 𝑡) = (𝐿−1

𝛽
)𝑠𝑡 . By Cramer’s rule,

we can obtain 𝜋 (𝑠, 𝑠) = 𝑑𝑒𝑡 (𝐿 (𝑠)
𝛽
)/𝑑𝑒𝑡 (𝐿𝛽) for the diagonal term and

𝜋 (𝑠, 𝑡) = 𝑑𝑒𝑡 (𝐿 (𝑡,𝑠)
𝛽
)/𝑑𝑒𝑡 (𝐿𝛽) for the non-diagonal term. Then, by

the matrix forest theorem developed in Section 3, we can compute

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang

the PPR values by the weights of spanning forests. Formally, we
have the following results.

THEOREM 3.4. Given a graph 𝐺 = (𝑉 , 𝐸), a source node 𝑠 and
a decay factor 𝛼 , the PPR value satisfies

𝜋 (𝑠, 𝑠) =
∑
𝐹 ∈F𝑠 𝑤 (𝐹)

∏
𝑢∈𝜌 (𝐹) 𝛽𝑑𝑢∑

𝐹 ∈F 𝑤 (𝐹)
∏

𝑢∈𝜌 (𝐹) 𝛽𝑑𝑢
,

where 𝛽 = 𝛼/(1 − 𝛼), F is the set of all rooted spanning forests in
𝐺 , F𝑠 denotes the set of all rooted spanning forests in 𝐺 having 𝑠 as
a root.

PROOF. According to Theorem 3.1, Theorem 3.2 and 𝜋 (𝑠, 𝑠) =
𝑑𝑒𝑡 (𝐿 (𝑠)

𝛽
)/𝑑𝑒𝑡 (𝐿𝛽), the result follows by a simple substitution. □

THEOREM 3.5. Given a graph 𝐺 = (𝑉 , 𝐸), a source node 𝑠 and
a decay factor 𝛼 , the PPR value satisfies

𝜋 (𝑠, 𝑣) =

∑
𝐹 ∈F𝑣,𝑠

𝑤 (𝐹) ∏
𝑢∈𝜌 (𝐹)

𝛽𝑑𝑢∑
𝐹 ∈F

𝑤 (𝐹) ∏
𝑢∈𝜌 (𝐹)

𝛽𝑑𝑢
,

for every node 𝑣 ∈ 𝑉 , where 𝛽 = 𝛼/(1−𝛼), F is the set of all rooted
spanning forests in 𝐺 , F𝑣,𝑠 denotes the set of all rooted spanning
forests in 𝐺 in which 𝑠 and 𝑣 are in the same connected component
and 𝑣 is a root.

PROOF. The theorem can be easily proved by the results of The-
orem 3.1, Theorem 3.3 and 𝜋 (𝑠, 𝑡) = 𝑑𝑒𝑡 (𝐿 (𝑡,𝑠)

𝛽
)/𝑑𝑒𝑡 (𝐿𝛽). □

Based on the above two theorems, 𝜋 (𝑠, 𝑡) equals the proportion of
weights of spanning forests in which 𝑠 is rooted in 𝑡 to weights of all
spanning forests. Clearly, the weights of all spanning forests form
a weight distribution. Let Pr(𝑠 rooted in 𝑡) be the probability that a
node 𝑠 rooted in a node 𝑡 in a spanning forest randomly sampled
from such a weight distribution. Then, we have the following results.

THEOREM 3.6. 𝜋 (𝑠, 𝑡) = Pr(𝑠 rooted in 𝑡).

PROOF. According to Theorem 3.4 and Theorem 3.5, 𝜋 (𝑠, 𝑡)
equals the sum of weights of rooted spanning forests that 𝑠 is rooted
in 𝑡 , divided by the sum of weights of all rooted spanning forests.
Since the rooted spanning forests are sampled from the distribution
Pr(𝐹) ∝ 𝑤 (𝐹)∏𝑢∈𝜌 (𝐹) 𝛽𝑑𝑢 , which is proportional exactly to the
weight of rooted spanning forest, the probability that 𝑠 is rooted in 𝑡

equals 𝜋 (𝑠, 𝑡). □

Note that a spanning forest may contain several connected compo-
nents (each tree is a connected component), which forms a partition
of the nodes in the graph. Once a spanning forest 𝐹 is generated,
its corresponding partition 𝜙 is determined. Note that for a fixed
partition 𝜙 of 𝐺 , there may be many spanning forests in 𝐺 that can
produce the partition 𝜙 . Interestedly, we find that if a partition 𝜙

is given, the conditional probability that a node 𝑠 is rooted in a
node 𝑡 (in a random spanning forest) conditioned on 𝜙 , denoted by
𝑃 (s rooted in t|𝜙), can be explicitly determined as follows.

THEOREM 3.7. Given a graph 𝐺 = (𝑉 , 𝐸), a spanning forest 𝐹
and its partition 𝜙 = (𝑉1, · · · ,𝑉𝑘). Suppose, without loss of gener-
ality, that 𝑠, 𝑡 are two distinct vertices and 𝑡 belongs to 𝑉𝑡 . Let 𝑑𝑣
be the weighted degree of node 𝑣 . Then, the conditional probability

that 𝑠 is rooted in 𝑡 conditioned on the partition 𝜙 equals 𝑑𝑡∑
𝑣∈𝑉𝑡 𝑑𝑣

if

𝑠 ∈ 𝑉𝑡 , equals 0 otherwise.

PROOF. Let 𝑤 (𝐹) denote the weight of a forest 𝐹 . Let �̃� (𝐹) =
𝑤 (𝐹) 1∏

𝑢∈𝑉
𝛽𝑑𝑢

∏
𝑢∈𝜌 (𝐹) 𝛽𝑑𝑢 denote the weight of a rooted forest 𝐹 .

Let F𝑠,𝑡 denote the set of rooted spanning forests that 𝑠 is rooted
in 𝑡 . Recall that a rooted spanning forest can partition node into
several connected components, we use F𝜙 to denote the set of
rooted spanning forests that have the partition 𝜙 . Let F𝜙

𝑠,𝑡 denote the
set of rooted spanning forests that 𝑠 is rooted in 𝑡 , and has a node
partition 𝜙 at the same time. Then the conditional probability can be
written as:

Pr(𝐹 ∈ F𝜙
𝑠,𝑡 | 𝜙) =

Pr(𝐹 ∈ F𝜙
𝑠,𝑡)

Pr(𝐹 ∈ F𝜙)

=

∑
𝐹 ∈F𝜙𝑠,𝑡

�̃� (𝐹)∑
𝐹 ∈F𝜙 �̃� (𝐹)

=
𝑑𝑡∑

𝑢∈𝑉𝑡 𝑑𝑢

The last equality follows because �̃� (𝐹) = 𝑤 (𝐹) 1∏
𝑢∈𝑉

𝛽𝑑𝑢

∏
𝑢∈𝜌 (𝐹) 𝛽𝑑𝑢 .

On undirected graphs, for each 𝐹 ∈ F𝜙
𝑠,𝑡 , in the connected component

𝑉𝑡 any node besides 𝑡 can also be assigned as a root. So, there exists
|𝑉𝑡 | rooted spanning forests 𝐹 ′ that has weight �̃� (𝐹 ′) differs from
�̃� (𝐹) by only a 𝑑𝑡 term. □

Armed with Theorem 3.7, we can further obtain a different method
to compute the PPR values. Let 𝑋𝑠𝑡 be an indicator random variable
that equals 1 if 𝑠 and 𝑡 are contained in the same component in
a random spanning forest, equals 0 otherwise. Then, we have the
following results.

THEOREM 3.8. 𝜋 (𝑠, 𝑡) = 𝐸 [𝑑𝑡∑
𝑢∈𝑉𝑡 𝑑𝑢

𝑋𝑠𝑡].

PROOF. Let 𝜙 be an arbitrary partition of 𝑉 . Then, we have the
following results:

𝜋 (𝑠, 𝑡) = Pr(𝑠 rooted in 𝑡)

=
∑
𝜙

Pr(𝑠 rooted in 𝑡 |𝜙) Pr(𝜙)

=
∑
𝜙

𝑑𝑡𝑋𝑠𝑡∑
𝑢∈𝑉𝑡 𝑑𝑢

Pr(𝜙)

=
∑
𝜙

𝑑𝑡𝑋𝑠𝑡∑
𝑢∈𝑉𝑡 𝑑𝑢

∑
𝐹𝑠.𝑡 .𝜙 (𝐹)=𝜙

Pr(𝐹)

=
∑
𝐹

𝑑𝑡𝑋𝑠𝑡∑
𝑢∈𝑉𝑡 𝑑𝑢

Pr(𝐹)

= 𝐸 [𝑑𝑡𝑋𝑠𝑡∑
𝑢∈𝑉𝑡 𝑑𝑢

] .

□

4 SAMPLING SPANNING FORESTS
Note that by Theorem 3.6, we can estimate the PPR values via
sampling spanning forests. Specifically, if we can sample spanning

Efficient Personalized PageRank Computation: A Spanning Forests Sampling Based Approach SIGMOD ’22, June 12–17, 2022, Philadelphia, PA

V2

V1

V4

V3

V6

V5

V7

V2

V1

V4

V3

V6

V5

V7

Figure 3: A random walk trajectory 𝛾 = (𝑣1, 𝑣4, 𝑣3, 𝑣2, 𝑣1, 𝑣4, 𝑣6)
and its loop-erased trajectory 𝐿𝐸 (𝛾) = (𝑣1, 𝑣4, 𝑣6)

forests according to its weights, that is, 𝑃 (𝐹) ∝ 𝑤 (𝐹)∏𝑢∈𝜌 (𝐹) 𝛽𝑑𝑢 ,
then an unbiased estimator of 𝜋 (𝑠, 𝑡) can be easily derived. For
example, suppose that we have drawn 𝑁 random spanning forests.
If 𝑛 of which has a component such that 𝑠 is rooted in 𝑡 , then we can
estimate 𝜋 (𝑠, 𝑡) as 𝑛

𝑁
.

The remaining question is how can we sample spanning forests
from such a weight distribution 𝑃 (𝐹)? To solve this problem, we
propose a loop-erased 𝛼-random walk approach to sample random
spanning forests based on the weight distribution 𝑃 (𝐹). Our tech-
nique is a nontrivial extension of the classic Wilson algorithm for
sampling spanning trees on graphs [48].

4.1 The loop-erased 𝛼-random walk
The loop-erased 𝛼-random walk does the same thing as the tradi-
tional 𝛼-random walk, but erasing all loops in the random walk
trajectory. Below, we first discuss the concept of the traditional
loop-erased random walk as introduced in [48].

Given a graph 𝐺 and a random walk trajectory 𝛾 = (𝑣1, · · · , 𝑣𝑙)
on 𝐺 , we define the loop-erased trajectory as 𝐿𝐸 (𝛾) = (𝑣𝑖1 , · · · , 𝑣𝑖 𝑗)
by deleting all loops in 𝛾 . Formally, 𝑖 𝑗 is defined by the following
inductive procedure: 𝑖1 = 1 and 𝑖 𝑗+1 =𝑚𝑎𝑥{𝑖 |𝑣𝑖 = 𝑣𝑖 𝑗 } + 1. Suppose
that 𝑖 𝑗 is the max index by the above definition. Then, 𝐿𝐸 (𝛾) contains
𝑖 𝑗 vertices and 𝑖 𝑗 −1 directed edges. Loop-erased random walk is also
self-avoiding; it will terminate when it hits the former trajectories.
Initially, we set a node as a root and stop the first random walk when
we hit the root. For example, in Fig. 3, suppose that 𝑣6 is the root, and
there is a random walk 𝛾 = (𝑣1, 𝑣4, 𝑣3, 𝑣2, 𝑣1, 𝑣4, 𝑣6) stopping when
it hits 𝑣6. Then, its loop-erased trajectory is 𝐿𝐸 (𝛾) = (𝑣1, 𝑣4, 𝑣6),
by erasing the loop (𝑣1, 𝑣4, 𝑣3, 𝑣2, 𝑣1). The process of erasing loops
can be efficiently implemented by recording the next node in the
random walk procedure. When a random walk stops, we retrace the
trajectory, by starting from the first node, walking to the recorded
next node until hitting the former trajectory. Note that the next node
may be re-written many times, but after retracing it stores a unique
next node in the final loop-erased trajectory.

The following results can be easily derived from [35].

THEOREM 4.1. Let 𝛾 = (𝑣𝑖1 , · · · , 𝑣𝑖 𝑗) be the final random walk
trajectory after erasing loops. Denote by the former trajectory set
Δ0 and let Δ𝑘 = Δ0 ∪ {𝑣1, · · · , 𝑣𝑘 }. We define 𝑤 (𝛾) = ∏𝑘

𝑖=1𝑤𝑖𝑘−1,𝑖𝑘 .
Then, the probability that 𝛾 is produced is

Pr(Γ = 𝛾) = 𝑤 (𝛾)𝑑𝑒𝑡 (𝐿
Δ𝑘)

𝑑𝑒𝑡 (𝐿Δ0)
,

where 𝐿 = 𝐷 −𝐴 is the Laplacian matrix.

PROOF. By the definition of the loop-erased random walk, at
each step (𝑣𝑖𝑘 , 𝑣𝑖𝑘+1) of 𝐿𝐸 (𝛾), a node from 𝑣𝑖𝑘 may travel arbitrary
number of loops before it finally walks one step from 𝑣𝑖𝑘 to 𝑣𝑖𝑘+1 .
Let 𝑃 be the transition matrix of the random walk. The probability

that 𝑣𝑖𝑘 returns to itself is
∑∞
𝑘=0 𝑃

𝑘
𝑣𝑖𝑘 ,𝑣𝑖𝑘

= (𝐼 − 𝑃)−1
𝑣𝑖𝑘 ,𝑣𝑖𝑘

. During the
random walk process, the random surfer is prevented from hitting the
former trajectories Δ𝑘−1 = {𝑣𝑖1 , · · · , 𝑣𝑖𝑘−1 }. For 𝑣𝑘 , if it hits Δ𝑘−1,
the loop-erased random walk will stop, and thus the probability
becomes (𝐼 − 𝑃)Δ𝑘−1

𝑣𝑖𝑘 ,𝑣𝑖𝑘
, where 𝐴Δ denotes the submatrix by deleting

rows and columns index by Δ in 𝐴. The theorem follows from an
application of Cramer’s rule. As the probability that a node 𝑢 travels
to itself before hitting Δ is given by𝐺 (𝑢,𝑢,Δ) = (𝐼−𝑃)Δ𝑢,𝑢 , according

to the Carmer’s rule, it can also be written as 𝑑𝑒𝑡 (𝐼−𝑃)Δ∪{𝑢}
𝑑𝑒𝑡 (𝐼−𝑃)Δ . It follows

that the probability is:

Pr(Γ = 𝛾) =
𝑘=𝑗∏
𝑘=0

𝐺 (𝑣𝑖𝑘 , 𝑣𝑖𝑘 ,Δ)𝑝𝑣𝑖𝑘−1 ,𝑣𝑖𝑘
.

The theorem follows by 𝑝𝑣𝑖𝑘−1 ,𝑣𝑖𝑘
=

𝑤𝑖𝑘−1,𝑖𝑘
𝑑𝑣𝑖𝑘−1

and substituting each

probability (note that most determinants will be eliminated by multi-
plying numerators and denominators). □

The loop-erased 𝛼-random walk is a nontrivial extension of the
traditional loop-erased random walk. At each step, the loop-erased
𝛼-random walk has a probability 𝛼 to stop. Suppose that it stops at
a node 𝑢, then 𝑢 is marked as a root. Note that for the loop-erased
𝛼-random walk, each loop-erased trajectory contains a root node
when the 𝛼-random walk stops. We can derive the probability that
a loop-erased trajectory 𝛾 = (𝑣𝑖1 , · · · , 𝑣𝑖 𝑗) is generated when the
loop-erased 𝛼-random walk stops at 𝑣𝑖 𝑗 .

THEOREM 4.2. Let 𝛾 = (𝑣𝑖1 , · · · , 𝑣𝑖 𝑗) be a loop-erased trajectory
generated by a loop-erased 𝛼-random walk which stops at 𝑣𝑖 𝑗 . De-
note by the former trajectory set Δ0, and let Δ𝑘 = Δ0 ∪ {𝑣1, · · · , 𝑣𝑘 }.
We define 𝑤 (𝛾) = ∏𝑘

𝑖=1𝑤𝑖𝑘−1,𝑖𝑘 . Then the probability that 𝛾 is pro-
duced is

Pr(Γ = 𝛾) = 𝛽𝑑𝑣𝑗
𝑑𝑒𝑡 ((𝐿 + 𝛽𝐷)Δ𝑘)
𝑑𝑒𝑡 ((𝐿 + 𝛽𝐷)Δ0)

𝑤 (𝛾) .

PROOF. In this case, the probability that a node 𝑢 travels to itself
before hitting Δ is given by (𝐼 − (1 − 𝛼)𝑃)Δ𝑢,𝑢 , if the random walk
does not stop with probability 𝛼 . According to the Carmer’s rule,

this can also be written as 𝑑𝑒𝑡 (𝐼−(1−𝛼)𝑃)Δ∪{𝑢}
𝑑𝑒𝑡 (𝐼−(1−𝛼)𝑃)Δ . It follows that the

probability Pr(Γ = 𝛾) is:

𝛼
𝑑𝑒𝑡 (𝐼 − (1 − 𝛼)𝑃)Δ𝑗−1

𝑑𝑒𝑡 (𝐼 − (1 − 𝛼)𝑃)Δ𝑗

𝑘=𝑗−1∏
𝑘=0

𝑑𝑒𝑡 (𝐼 − (1 − 𝛼)𝑃)Δ𝑘−1

𝑑𝑒𝑡 (𝐼 − (1 − 𝛼)𝑃)Δ𝑘

(1 − 𝛼)𝑤𝑣𝑘−1,𝑣𝑘

𝑑𝑣𝑘−1
.

The theorem follows by eliminating numerators and denominators
and by substituting 𝛽 = 𝛼

1−𝛼 (note that 𝐿 + 𝛽𝐷 = 1
1−𝛼𝐷 − 𝐴 =

1
1−𝛼𝐷

−1 (𝐼 − (1 − 𝛼)𝑃)). □

4.2 Algorithm for sampling spanning forests
Here we present our algorithm for sampling spanning forests. The in-
tuition is that by iteratively performing loop-erased 𝛼-random walks
until all nodes in 𝐺 are traveled, the trajectory exactly constructs
a rooted spanning forest. We will see that the probability of each
spanning forest 𝐹 generated by our algorithm is exactly proportional
to its weights, i.e., Pr(𝐹) ∝ 𝑤 (𝐹)∏𝑢∈𝜌 (𝐹) 𝛽𝑑𝑢 .

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang

Algorithm 1: Sampling spanning forests by loop-erased
𝛼-random walk

Input: Graph 𝐺 = (𝑉 , 𝐸) , a decay factor 𝛼
Output: 𝑅𝑜𝑜𝑡 [𝑢] for all 𝑢 ∈ 𝑉

1 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢] ← 𝑓 𝑎𝑙𝑠𝑒, 𝑁𝑒𝑥𝑡 [𝑢] ← −1, 𝑅𝑜𝑜𝑡 [𝑢] = −1 for 𝑢 ∈ 𝑉 ;
2 Fix an arbitrary ordering (𝑣1, · · · , 𝑣𝑛) of𝑉 ;
3 for 𝑖 = 1 : 𝑛 do
4 𝑢 = 𝑣𝑖 ;
5 while !𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢] do
6 if 𝑟𝑎𝑛𝑑 () < 𝛼 then
7 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢] ← 𝑡𝑟𝑢𝑒, 𝑅𝑜𝑜𝑡 [𝑢] ← 𝑢;

8 else
9 𝑁𝑒𝑥𝑡 [𝑢] ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑢);

10 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢];

11 𝑟 ← 𝑅𝑜𝑜𝑡 [𝑢], 𝑢 ← 𝑣𝑖 ;
12 while !𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢] do
13 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢] ← 𝑡𝑟𝑢𝑒, 𝑅𝑜𝑜𝑡 [𝑢] ← 𝑟 ;
14 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢];

15 return 𝑅𝑜𝑜𝑡 [𝑢] for all 𝑢 ∈ 𝑉 ;

The implementation details of the loop-erased 𝛼-random walk
based sampling algorithm is outlined in Algorithm 1, which is an
extension of the classic Wilson algorithm [48]. Specifically, Algo-
rithm 1 starts by initializing an empty set 𝐹 . We use a bool vector
𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 to record whether node 𝑢 has been added into 𝐹 or not,
a vector 𝑁𝑒𝑥𝑡 to record the next node in random walk step, and a
vector 𝑅𝑜𝑜𝑡 to record the root of each node in the sampled spanning
forest. The three vectors are initialized as 𝑓 𝑎𝑙𝑠𝑒, −1 and −1 respec-
tively (Line 1). Then, the loop-erased 𝛼-random walks are performed
iteratively from a node 𝑢 following a pre-fixed node ordering, and
the resulting loop-erased trajectory is added into 𝐹 until all nodes
are covered (Line 3-14). Specifically, in each step, the random walk
will stop in two cases, either (1) terminates at the current node with
probability 𝛼 (Line 6-7), or (2) terminates when hitting the former
trajectories maintained by 𝐹 (Line 5). If the loop-erased 𝛼-random
walk stops with the first case, the vertex 𝑢 is assigned as a root and
added into 𝐹 (Line 7). After the random walk stops, we retrace the
walk by the 𝑁𝑒𝑥𝑡 array, and add the loop-erased trajectory into 𝐹

(Line 13-14). The algorithm terminates when all nodes are processed
(Line 3), and 𝐹 is returned as a rooted spanning forest sampled from
the weight distribution (Line 15). Note that since we only use the
root information of the sampled spanning forest, it suffices to return
the 𝑅𝑜𝑜𝑡 vector to represent a rooted spanning forest.

THEOREM 4.3. Let 𝜌 (𝐹) be the root set of a rooted spanning
forest 𝐹 . Each 𝐹 of 𝐺 is sampled by Algorithm 1 with probability
proportional to 𝑤 (𝐹)∏𝜌 (𝐹) 𝛽𝑑𝑢 , that is

Pr(𝛾 = 𝐹) =
∏

𝑢∈𝜌 (𝐹)
𝛽𝑑𝑢 ·

𝑤 (𝐹)
𝑑𝑒𝑡 (𝐿 + 𝛽𝐷) ∝ 𝑤 (𝐹)

∏
𝑢∈𝜌 (𝐹)

𝛽𝑑𝑢 .

PROOF. Note that in Algorithm 1, after a loop-erased 𝛼-random
walk stops, we will start a new one outside from it, until all nodes
are processed. Clearly, all nodes in 𝑉 will be divided into 𝑙 subsets
{𝑉1, · · · ,𝑉𝑙 } by 𝑙 loop-erased trajectories (each 𝑉𝑖 is a node set of
a loop-erased trajectory). Let Δ𝑘 = ∪𝑘

𝑖=1𝑉𝑖 . Then, by Theorem 4.2,

-1.0 -0.5 0 0.5 1.0
0

0.01

0.02

0.03

0.04

0.05

p
d

f

(a) Youtube (distribution of eigenvalues)

-1.0 -0.5 0 0.5 1.0
0

0.02

0.04

0.06

p
d

f

(b) Pokec (distribution of eigenvalues)

1.4M

1.6M

1.8M

2.0M

10
-1

10
-2

10
-3

10
-4

10
-5

τ

α

(c) Youtube

1.7M

1.8M

1.9M

10
-1

10
-2

10
-3

10
-4

10
-5

τ

α

(d) Pokec

Figure 4: The distribution of eigenvalues of the matrix 𝑃 (𝑃 =

𝐷−1𝐴) and the results of 𝜏 with varying 𝛼

the probability Pr(𝛾 = 𝐹) is a product probability over all 𝑙 loop-
erased trajectories, in which each term is with Δ𝑘 on the numerator
and Δ𝑘−1 on the denominator. As a result, the theorem is easily
established by eliminating numerators and denominators. □

Complexity anlaysis. The time complexity of Algorithm 1 can be
derived by analyzing the number of operations on the 𝑁𝑒𝑥𝑡 array
(Line 10). For the loop-erased random walk, when a loop is gener-
ated, the 𝑁𝑒𝑥𝑡 value of a node will be revised. The total number
of random walk steps is mainly determined by the total number of
revision of the 𝑁𝑒𝑥𝑡 array in Line 10, because the cost spent in the
retrace process (Line 11-14) is dominated by the cost taken by the
random walk process (Line 4-10). Note that the expected number
of revision of the 𝑁𝑒𝑥𝑡 array in Line 10 equals the sum of the ex-
pected number of visits of each node in the entire 𝛼-loop erased walk
process, which is denoted by 𝜏 . As a result, the time complexity of
Algorithm 1 is 𝑂 (𝜏). Below, we analyze the the expected number of
visits for each node in the 𝛼-loop erased walk process.

Suppose that 𝑣1 is the first node in the pre-fixed node ordering.
Then, the expected number of visits to 𝑣1 is given by 1

𝛼 𝜋 (𝑣1, 𝑣1),
which can be derived by the power expansion

∑∞
𝑘=0 (1 − 𝛼)

𝑘𝑃𝑘 𝑣1,𝑣1

(𝑃 = 𝐷−1𝐴 is the probability transition matrix). In each step 𝑘, the
expected probability mass that the 𝛼-random walk passes through
𝑣1 is (1 − 𝛼)𝑘𝑃𝑘𝑣1,𝑣1 , if the random walk does not stop. After that,
the 𝛼-loop erased walk will no longer pass through 𝑣1. Furthermore,
the most important property of the loop-erased walk is that the node
ordering is irrelevant to the final result [48]. That is, any node can be
the first node and the final trajectory maintains the same distribution
[48]. As a result, during the whole 𝛼-loop erased walk process, the ex-
pected number of visits to a node𝑢 is 1

𝛼 𝜋 (𝑢,𝑢). By summing over all
nodes, we can obtain 𝜏 = 1

𝛼

∑
𝑢∈𝑉 𝜋 (𝑢,𝑢). Note that since 𝜋 (𝑢,𝑢) =∑∞

𝑘=0 𝛼 (1 − 𝛼)
𝑘𝑃𝑘𝑢𝑢 , we have 𝜏 =

∑
𝑢∈𝑉 (

∑∞
𝑘=0 (1 − 𝛼)

𝑘𝑃𝑘𝑢𝑢). The
following lemma show that 𝜏 is closely related to the spectrum of
the probability transition matrix 𝑃 (𝑃 = 𝐷−1𝐴).

LEMMA 4.4. Let 1 = 𝜆1 > 𝜆2 ≥ · · · ≥ 𝜆𝑛 > −1 be the eigenval-
ues of the probability transition matrix 𝑃 . Then, we have

𝜏 =

𝑛∑
𝑖=1

1
1 − (1 − 𝛼)𝜆𝑖

. (11)

Efficient Personalized PageRank Computation: A Spanning Forests Sampling Based Approach SIGMOD ’22, June 12–17, 2022, Philadelphia, PA

Algorithm 2: The Forward Push Algorithm
Input: Graph 𝐺 , source node 𝑠, decay factor 𝛼 , threshold 𝑟𝑚𝑎𝑥

Output: Reserve 𝑞𝑠 [𝑣] and residual 𝑟 [𝑣] for all 𝑣 ∈ 𝑉
1 for each 𝑢 ∈ 𝑉 do
2 𝑟 [𝑢] = 0, 𝑞𝑠 [𝑢] = 0;

3 𝑟 [𝑠] = 1;
4 while ∃𝑢 ∈ 𝑉 such that 𝑟 [𝑢] ≥ 𝑑𝑢 · 𝑟𝑚𝑎𝑥 do
5 𝑞𝑠 [𝑢] += 𝛼𝑟 [𝑢];
6 for each 𝑧 ∈ 𝑁 (𝑢) do
7 𝑟 [𝑧] += (1 − 𝛼)𝑤𝑧𝑢𝑟 [𝑢]/𝑑𝑢 ;

8 𝑟 [𝑢] = 0;

PROOF. Recall that the trace of a matrix is the sum of its diago-
nal elements and also equals the sum of its eigenvalues. Thus, we
have: 𝜏 =

∑
𝑢∈𝑉 (

∑∞
𝑘=0 (1 − 𝛼)

𝑘𝑃𝑘𝑢𝑢) =
∑∞
𝑘=0 (1 − 𝛼)

𝑘𝑇𝑟𝑎𝑐𝑒 (𝑃𝑘) =∑∞
𝑘=0 (1 − 𝛼)

𝑘 ∑𝑛
𝑖=𝑖 𝜆

𝑘
𝑖
=
∑𝑛
𝑖=1

∑∞
𝑘=0 (1 − 𝛼)

𝑘𝜆𝑘
𝑖
=
∑𝑛
𝑖=1

1
1−(1−𝛼)𝜆𝑖 .

□

Armed with Lemma 4.4, we can explain why 𝜏 is insensitive to
𝛼 as follows. To estimate all nodes’ personalized PageRank values,
traditional 𝛼-random walk based methods need to simulate 𝛼-random
walks from all nodes, which takes 𝑂 (𝑛𝛼) per sample. For our loop-
erased 𝛼-random walk, the total time complexity is 𝑂 (𝜏), which is
related to the spectrum of 𝑃 . There are a large number of previous
studies on the spectrum of transition probability matrix on real world
graphs [18, 21, 22]. Note that 𝜏 is the sum of 𝑛 terms, each term

1
1−(1−𝛼)𝜆𝑖 falls in the range (1

2−𝛼 ,
1
𝛼], because |𝜆𝑖 | < 1. Therefore,

we have 𝜏 < 𝑛
𝛼 . Moreover, we can see that when 𝜆𝑖 is close to 1,

1
1−(1−𝛼)𝜆𝑖 is close to 1

𝛼 . When 𝜆𝑖 is close to 0, 1
1−(1−𝛼)𝜆𝑖 is close

to 1, which is independent on 𝛼 . As reported in [18], most of the
eigenvalues of 𝑃 in real-world graphs are concentrated around 0.
That is to say, most terms in Eq. (11) are independent on 𝛼 , thus 𝜏 is
insensitive to 𝛼 in real-world graphs. We also conduct experiments to
compute the spectrum of 𝑃 on 7 real world graphs (see Table 1) using
the method proposed in [18]. The results on Youtube and Pokec are
shown in Fig. 4(a-b). Similar results can also be observed on the
other datasets. As can be seen, the distribution of eigenvalues are
indeed concentrated around 0, implying that the time overhead of
Algorithm 1 is insensitive w.r.t. 𝛼 . We also study how the 𝜏 changes
as 𝛼 decreases. As shown in Fig. 4(c-d), 𝜏 increases smoothly w.r.t.
𝛼 (note that in the horizontal axis, 𝛼 decreases exponentially), which
further confirms that our algorithm is insensitive to 𝛼 .

5 SINGLE SOURCE PPR QUERY
In this section, we apply the proposed techniques to improve the
performance of the existing algorithms for answering the single
source PPR query. Below, we first briefly review the forward push
algorithm and the state-of-the-art two-stage algorithms which com-
bine deterministic forward push and 𝛼-random walk sampling. Then,
we present our solutions by replacing the traditional 𝛼-random walk
sampling with the proposed loop-erased 𝛼-random walk sampling.

5.1 Existing solutions
The forward push algorithm. The forward push algorithm is an
efficient local method to compute single source PPR vector which
was first proposed in [4]. As shown in Algorithm 2, the forward
push algorithm maintains two vectors, including a reserve vector
𝑞𝑠 (𝑣) and a residual vector 𝑟 (𝑣) for all 𝑣 ∈ 𝑉 . Specifically, a push
procedure (Line 4-8) is applied for each 𝑣 with 𝑟 (𝑣) larger than
𝑑𝑣 · 𝑟𝑚𝑎𝑥 until no such 𝑣 exists. During the entire procedure, the
following invariant is maintained for all 𝑣 ∈ 𝑉 [4]:

𝜋 (𝑠, 𝑣) = 𝑞𝑠 (𝑣) +
∑
𝑢∈𝑉

𝑟 (𝑢)𝜋 (𝑢, 𝑣) . (12)

The algorithm runs in 𝑂 (1
𝛼𝑟𝑚𝑎𝑥

) time. When 𝑟𝑚𝑎𝑥 tends to 0, 𝑞𝑠 (𝑣)
converges to 𝜋 (𝑠, 𝑣). However, a major limitation of the forward
push algorithm is that there is no additive or relative error guarantee
on 𝑞𝑠 (𝑣) for a fixed 𝑟𝑚𝑎𝑥 .

The 𝛼-random walk sampling algorithm. The single source PPR
query can be efficiently estimated by simulating 𝛼-random walks.
The algorithm generates a number of random walks from 𝑠, then
counts the fraction of random walks that terminates at 𝑣 as an es-
timation of 𝜋 (𝑠, 𝑣). The major drawback of this algorithm is that
to obtain a precise estimation, the number of samples can be very
large. According to [7], to guarantee a relative error 𝜖, it needs to
generate 𝑂 (𝑛𝑙𝑜𝑔𝑛

𝜖2) 𝛼-random walks. As the expected length of each

𝛼-random walk is 1
𝛼 , the algorithm takes 𝑂 (𝑛𝑙𝑜𝑔𝑛

𝛼𝜖2) time.

Combining forward push and 𝛼-random walk sampling. To over-
come the limitations of the forward push and the 𝛼-random walk
sampling algorithms, Wang et al. [46] proposed a two-stage algo-
rithm, called FORA, which combines a deterministic forward push
stage and a Monte Carlo stage by sampling 𝛼-random walks. Let
𝑊 =

𝑛𝑙𝑜𝑔𝑛

𝜖2 . To achieve a relative error 𝜖, FORA first performs for-
ward push with threshold 𝑟𝑚𝑎𝑥 , and then runs 𝑟 (𝑣)𝑊 random walks
from each node 𝑣 . The total 𝛼-random walks needed can be bounded
by 𝑛𝑙𝑜𝑔𝑛 · 𝑟𝑚𝑎𝑥𝑊 . Then, 𝑟𝑚𝑎𝑥 is set to minimize the complexity.
As a result, FORA reduces the time complexity of the 𝛼-random
walk sampling algorithm from 𝑂 (𝑛𝑙𝑜𝑔𝑛

𝛼𝜖2) to 𝑂 (𝑛𝑙𝑜𝑔𝑛𝛼𝜖). Recently, Re-
sAcc [31] and SPEEDPPR [49] improves FORA by accelerating the
forward push algorithm. In particular, SPEEDPPR admits a time
complexity 𝑂 (1

𝛼 𝑛𝑙𝑜𝑔𝑛𝑙𝑜𝑔
1
𝜖 +

𝑛𝑙𝑜𝑔𝑛
𝛼) which is the state-of-the-art

algorithm. However, for all the two-stage algorithms, no existing
optimization technique has been done for the Monte Carlo stage.

5.2 Our solutions
In this subsection, we present our solutions based on the idea of
replacing traditional 𝛼-random walks with loop-erased 𝛼-random
walks in the state-of-the-art algorithms. We find that implementing
such an idea is nontrivial, and there are two technical challenges
needed to be tackled. Below, we first describe two challenges and
the high-level ideas of our solutions to tackle these challenges.

Challenges and high-level ideas of our solutions. First, recall that
in FORA, the number of 𝛼-random walks needed to sample from
node 𝑢 is 𝑟 (𝑢)𝑊 , which is different for each node. This is because
the threshold used in the forward push algorithm for each node is
different. The high-degree node may admit a very large residue, thus

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang

Algorithm 3: The Balanced Forward Push Algorithm
Input: Graph 𝐺 , source node 𝑠, decay factor 𝛼 , threshold 𝑟𝑚𝑎𝑥

Output: Reserve 𝑞𝑠 [𝑣] and residual 𝑟 [𝑣] for all 𝑣 ∈ 𝑉
1 for each 𝑢 ∈ 𝑉 do
2 𝑟 [𝑢] = 0, 𝑞𝑠 [𝑢] = 0

3 𝑟 [𝑠] = 1;
4 while ∃𝑢 ∈ 𝑉 such that 𝑟 [𝑢] ≥ 𝑟𝑚𝑎𝑥 do
5 𝑞𝑠 [𝑢] += 𝛼𝑟 [𝑢];
6 for each 𝑧 ∈ 𝑁 (𝑢) do
7 𝑟 [𝑧] += (1 − 𝛼)𝑤𝑧𝑢𝑟 [𝑢]/𝑑𝑢 ;

8 𝑟 [𝑢] = 0;

requires a large number of 𝛼-random walks. The total number of 𝛼-
random walk in FORA can be bounded by 𝑛𝑟𝑚𝑎𝑥𝑊 . However, in the
context of sampling spanning forests using loop-erased 𝛼-random
walks, the number of samples are the same for all nodes. Suppose
that 𝑑𝑚𝑎𝑥 is the largest degree over all nodes. Then, by applying
the Chernoff bound, it requires 𝑑𝑚𝑎𝑥𝑟𝑚𝑎𝑥𝑊 loop-erased 𝛼-random
walks, which makes the algorithm inefficient.

To circumvent this issue, we propose a new forward push algo-
rithm called balanced forward push, which adapts the threshold
for each node 𝑢 from 𝑑𝑢𝑟𝑚𝑎𝑥 to 𝑟𝑚𝑎𝑥 . The detailed implementa-
tion is shown in Algorithm 3. Although the balanced forward push
algorithm only changes the threshold (compared to the traditional
forward push algorithm), it is nontrivial to analyze its time complex-
ity. Moreover, it is also very challenging to analyze the number of
samples needed in our two-stage PPR computation algorithm when
using such a balanced forward push as the push stage. We will tackle
this by introducing an improved estimator together with carefully ap-
plying the Chernoff bound (see Theorem 5.3). Our result shows that
it is sufficient to sample 𝑟𝑚𝑎𝑥𝑊 random spanning forests without
losing theoretical guarantee. Note that sampling a random spanning
forest is roughly equivalent to draw 𝑛 𝛼-random walk samples. Since
sampling a random spanning forest by loop-erased 𝛼-random walk is
often much faster than sampling 𝑛 𝛼-random walks, we can achieve
significantly speedup over FORA, as confirmed in our experiments.

Second, to estimate 𝜋 (𝑠, 𝑡), a basic estimator only needs the in-
formation of the spanning forests in which 𝑠 is rooted in 𝑡 based on
Theorem 3.6. Let 𝑋𝑖 be a random variable that represents whether
a node 𝑖 is rooted in a target node 𝑡 in a random spanning forest.
It is easy to verify that random variables 𝑋1, · · · , 𝑋𝑛 are depen-
dent, which violates the condition of applying Chernoff inequality
to bound the sample size. To tackle this challenge, we propose an
improved estimator based on Theorem 3.8. The key idea of the im-
proved estimator is based on the so-called conditional Monte Carlo
estimation technique [37], because our spanning forests sampling
method can obtain the root probability conditioned on a fixed par-
tition of the graph. By using the conditional probabilities, we can
reduce the variance of the estimator based on the result of the to-
tal variance formula 𝑉𝑎𝑟 [𝑋] = 𝑉𝑎𝑟 [𝐸 [𝑋 |𝑌]] + 𝐸 [𝑉𝑎𝑟 [𝑋 |𝑌]], and
𝑉𝑎𝑟 [𝑋] > 𝑉𝑎𝑟 [𝐸 [𝑋 |𝑌]] since a variance is always non-negative.
More intuitively, compared to the basic estimator, the improved
estimator based on Theorem 3.8 can use much more additional in-
formation of a sampled spanning forest (i.e., the information of two
nodes in the same connected component), instead of only using the

Algorithm 4: FORAL (FORALV)
Input: Graph 𝐺 = (𝑉 , 𝐸) , source node 𝑠, decay factor 𝛼 , push

threshold 𝑟𝑚𝑎𝑥 , relative error threshold 𝜖 , PPR value
threshold 𝜇

Output: Estimate PPR 𝜋 (𝑠, 𝑣) for all 𝑣 ∈ 𝑉
1 Invoke balanced forward push with parameters 𝐺 , 𝑠, 𝛼 and 𝑟𝑚𝑎𝑥 ;
2 Let 𝑟 (𝑠, 𝑣𝑖) , 𝜋 (𝑠, 𝑡) be the returned residue and reserve for all

𝑣𝑖 ∈ 𝑉 ;

3 Let𝑊 =
(2𝜖/3+2) ·𝑙𝑜𝑔 (2/𝑝𝑓)

𝜖2 ·𝜇 ;

4 Let 𝜔 = ⌈𝑟𝑚𝑎𝑥 ·𝑊 ⌉;
5 for 𝑖 = 1 : 𝜔 do
6 Simulate loop-erased 𝛼-random walks on 𝐺 ;
7 Let 𝐹𝑖 be the returned random spanning forest;
8 for each node 𝑡 ∈ 𝑉 do
9 Let𝑉𝑣 be subset of the partition Φ(𝐹𝑖) which 𝑣 belongs to;

10 if apply variance reduction then
11 𝑎𝑣 =

𝑑𝑣
∑
𝑢∈𝑉𝑣 𝑟 (𝑢)∑
𝑢∈𝑉𝑣 𝑑𝑢

;

12 else
13 𝑎𝑣 =

∑
𝑢∈𝑉𝑣

𝑟 (𝑢);
14 𝜋 (𝑠, 𝑣) = 𝜋 (𝑠, 𝑣) + 𝑎𝑣/𝜔;

15 return 𝜋 (𝑠, 𝑣) for all 𝑣 ∈ 𝑉 ;

root information as used in the basic estimator, thus can reduce the
variance. Note that such a variance reduction trick can reduce the
number of samples needed for a desired accuracy guarantee. More-
over, we will show that we are able to bound the sample size based
on such a technique.

The proposed algorithm. Based on the above high-level ideas, we
present our algorithms FORAL and FORALV in Algorithm 4, which
corresponds to the algorithm with the basic estimator and the im-
proved estimator respectively. The algorithm first invokes the bal-
anced forward push to obtain the residual 𝑟 (𝑠,𝑢) and reserve 𝑞𝑠 [𝑢]
for all 𝑢 ∈ 𝑉 (Lines 1-2). After that, the algorithm sets the param-
eters𝑊 and 𝜔 to guarantee the approximate accuracy (Lines 3-4).
Then, 𝜔 random spanning forests are sampled independently by
simulating loop-erased 𝛼-random walks to estimate the PPR values
(Lines 5-14). Let 𝐹𝑖 be the 𝑖-th sampled random spanning forest
(Line 7). Then, the estimator is updated in two different ways, with
or without applying the variance reduction technique. In particular,
in FORAL (the algorithm with the basic estimator), 𝑎𝑣 is computed
as the sum over residuals on the subset of the connected component
which 𝑣 belongs to (Line 14). However, in FORALV (the algorithm
with the improved estimator), 𝑎𝑣 is computed by weighted averaging
the residual in that subset according to the conditional probability
(Line 11). Finally, the estimation 𝜋 (𝑠, 𝑣) is returned for each 𝑣 ∈ 𝑉
as the query result (Line 15).

Note that in Line 1 of Algorithm 4, we can also use the improved
forward push algorithm proposed in [49]. We refer to Algorithm 1
with the improved forward push algorithm as SPEEDL (with a basic
estimator) and SPEEDLV (with an improved estimator) respectively.
Below, we analyze the correctness and sample complexity of the
proposed algorithms.

Analysis of the algorithm. First, we formally define the proposed
estimators. Let 𝑟 (𝑢) be the residual of 𝑢 returned by forward push

Efficient Personalized PageRank Computation: A Spanning Forests Sampling Based Approach SIGMOD ’22, June 12–17, 2022, Philadelphia, PA

algorithm, 𝑉𝑣 be the vertex set that is rooted in the same node as 𝑣 .
Then, to estimate

∑
𝑢∈𝑉 𝑟 (𝑢)𝜋 (𝑢, 𝑣) in Eq. (12), we can define two

estimators 𝑟 (𝑣) and 𝑟 (𝑣) for all 𝑢 ∈ 𝑉 , where 𝑟 (𝑣) ≜ ∑
𝑢∈𝑉𝑣

𝑟 (𝑢) is

a basic estimator and 𝑟 (𝑣) ≜ 𝑑𝑣
∑

𝑢∈𝑉𝑣 𝑟 (𝑢)∑
𝑢∈𝑉𝑣 𝑑𝑢

is an improved estimator.
Let 𝑋𝑠 be an indicator random variable that equals 1 if 𝑠 is rooted

in 𝑡 in a spanning forest, equals 0 otherwise. Then, by Theorem 3.6,
we have 𝐸 [𝑋𝑠] = 𝜋 (𝑠, 𝑡). In other words, 𝑟 (𝑣) is an unbiased estima-
tor of

∑
𝑣∈𝑉 𝑟 (𝑣)𝜋 (𝑣, 𝑡), thus the correctness of FORAL and SPEEDL

can be guaranteed.
Let 𝑋𝑠𝑡 be the co-occurrence random variable that equals 1 when

𝑠 and 𝑡 are in the same connected component of a spanning forest,
equals 0 otherwise. By Theorem 3.8, we have 𝜋 (𝑠, 𝑡) = 𝐸 [𝑑𝑡𝑋𝑠𝑡∑

𝑢∈𝑉 𝑑𝑣
].

Let 𝑌 =
∑

𝑣∈𝑉 𝑟 (𝑣) 𝑑𝑡𝑋𝑣𝑡∑
𝑣∈𝑉𝑠 𝑑𝑡

. Then, we can derive that 𝐸 [𝑌] =∑
𝑣∈𝑉 𝑟 (𝑣)𝜋 (𝑣, 𝑡) by the linearity of expectation. As a consequence,

𝑟 (𝑣) is an unbiased estimator of
∑

𝑣∈𝑉 𝑟 (𝑣)𝜋 (𝑣, 𝑡), which guarantees
the correctness of FORALV and SPEEDLV.

The following lemma shows that the improved estimator has a
smaller variance compared to the basic estimator.

LEMMA 5.1. 𝑉𝑎𝑟 [𝑟 (𝑣)] ≤ 𝑉𝑎𝑟 [𝑟 (𝑣)] for all 𝑣 ∈ 𝑉 .

PROOF. For each node 𝑢 ∈ 𝑉𝑣 , we have 𝑑𝑣∑
𝑢∈𝑉𝑣 𝑑𝑢

≤ 1. As a

result,
𝑑𝑣

∑
𝑢∈𝑉𝑣 𝑟 (𝑢)∑
𝑢∈𝑉𝑣 𝑑𝑢

≤ ∑
𝑢∈𝑉𝑣

𝑟 (𝑢). We have 𝐸 [𝑟2 (𝑣)] ≤ 𝐸 [𝑟2 (𝑣)],
the variance inequality follows. □

Note that the relative error of Algorithm 4 with the basic esti-
mator is hard to bound due to the dependency of random variables
𝑋𝑠 . However, the practical performance of our FORAL and SPEEDL
algorithms are comparable to the state-of-the-art algorithms as con-
firmed in our experiments. Interestingly, unlike the basic estimator,
we find that Algorithm 4 with the improved estimator can obtain
a relative error guarantee. For our analysis, we need the following
Chernoff bound [17].

THEOREM 5.2. (Chernoff bound) Let 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑛) be indepen-
dent random variables satisfying 𝑋𝑖 ≤ 𝐸 [𝑋𝑖] +𝑀 for 1 ≤ 𝑖 ≤ 𝑛. Let
𝑋 = 1

𝑛𝑟

∑
𝑖=1 𝑋𝑖 . Assume that 𝐸 [𝑋] and 𝑉𝑎𝑟 [𝑋] be the expectation

and variance of 𝑋 . Then we have

Pr(|𝑋 − 𝐸 [𝑋] | ≥ 𝜆) ≤ 2𝑒𝑥𝑝 (− 𝜆2𝑛𝑟
2𝑉𝑎𝑟 [𝑋] + 2𝑀𝜆/3) .

By the Chernoff bound, we can derive the following theorem.

THEOREM 5.3. For any node 𝑡 with 𝜋 (𝑠, 𝑡) > 𝜇, Algorithm 4 re-
turns an approximate PPR value 𝜋 (𝑠, 𝑡) satisfying |𝜋 (𝑠, 𝑡)−𝜋 (𝑠, 𝑡) | ≤
𝜖𝑑𝑡𝜋 (𝑠, 𝑡) with probability at least 1 − 𝑝 𝑓 .

PROOF. Let 𝑌 =
∑
𝑢∈𝑉 𝑟 (𝑠,𝑢) 𝑑𝑡𝑋𝑢𝑡∑

𝑢∈𝑉𝑠 𝑑𝑡
. An important property of

𝑌 is that:

𝑌 =
∑
𝑢∈𝑉

𝑟 (𝑠,𝑢) 𝑑𝑡𝑋𝑢𝑡∑
𝑢∈𝑉𝑡 𝑑𝑢

=
𝑑𝑡

∑
𝑢∈𝑉𝑡 𝑟 (𝑠,𝑢)∑
𝑢∈𝑉𝑡 𝑑𝑢

≤ 𝑑𝑡𝑟𝑚𝑎𝑥 .

Let 𝑍 = 𝑌
𝑑𝑡𝑟𝑚𝑎𝑥

, we have 𝑍 ≤ 1, 𝑍 2 ≤ 1. As a result, we have

𝑉𝑎𝑟 [𝑍] = 𝐸 [𝑍 2] − 𝐸 [𝑍]2 ≤ 𝐸 [𝑍 2] ≤ 𝐸 [𝑍] ≤ 𝜋 (𝑠,𝑡)
𝑑𝑡𝑟𝑚𝑎𝑥

. Also, we

have𝑉𝑎𝑟 [𝑌] ≤ 𝑑𝑡𝑟𝑚𝑎𝑥𝜋 (𝑠, 𝑡). By substituting 𝑀 = 𝑑𝑡𝑟𝑚𝑎𝑥 in Theo-
rem 5.2, we have

Pr(|𝑌 − 𝐸 [𝑌] | ≥ 𝜆) ≤ 2𝑒𝑥𝑝 (− 𝜆2𝑛𝑟
𝑑𝑡𝑟𝑚𝑎𝑥 (2𝜋 (𝑠, 𝑡) + 2𝜆/3)).

Let 𝜆 = 𝜖𝑑𝑡𝜋 (𝑠, 𝑡). Then, by 𝜋 (𝑠, 𝑡) − 𝜋 (𝑠, 𝑡) = 𝑌 − 𝐸 [𝑌], we have

Pr(|𝜋 (𝑠, 𝑡)−𝜋 (𝑠, 𝑡) | ≥ 𝜖𝑑𝑡𝜋 (𝑠, 𝑡)) ≤ 2𝑒𝑥𝑝 (− 𝜖2 · 𝑛𝑟 · 𝜋 (𝑠, 𝑡)
𝑟𝑚𝑎𝑥 (2 + 2𝜖/3)) ≤ 𝑝 𝑓 .

The last inequality follows by substituting𝑛𝑟 >
𝑟𝑚𝑎𝑥 (2𝜖/3+2)𝑙𝑜𝑔 (2/𝑝𝑓)

𝜖2 ·𝜇
and 𝜋 (𝑠, 𝑡) > 𝜇. □

Similar to the time complexity analysis of the forward push al-
gorithm [4], we can easily derive that the time complexity of our
balanced forward push is 𝑂 (𝑑

𝛼𝑟𝑚𝑎𝑥
), where 𝑑 is the average degree.

It can be further simplified as 𝑂 (log𝑛
𝛼𝑟𝑚𝑎𝑥

) on scale-free graphs when

𝑑 =

∑
𝑢∈𝑉 𝑑𝑢
𝑛 = 2𝑚

𝑛 = 𝑂 (log𝑛).

LEMMA 5.4. Let 𝑑 be the average degree. The time complexity
of the balanced forward push can be bounded by 𝑂 (𝑑

𝛼𝑟𝑚𝑎𝑥
).

PROOF. Let 𝑐𝑝𝑢𝑠ℎ be cost of each push operation. In each push
operation of Algorithm 3, we pick a node 𝑢 with residual 𝑟 (𝑠,𝑢)
larger than 𝑟𝑚𝑎𝑥 , transfer a mass of 𝛼𝑟 (𝑠,𝑢) to its reserve 𝑞𝑠 [𝑢],
and push the remaining probability mass (1 − 𝛼)𝑟 (𝑠,𝑢)/𝑑𝑢 to its
neighbors. According to Eq. (12), the reserve 𝑞𝑠 [𝑢] is always smaller
than 𝜋 (𝑠,𝑢), thus the number of pushes is bounded by 𝑞𝑠 [𝑢]

𝛼𝑟𝑚𝑎𝑥
≤

𝜋 (𝑠,𝑢)
𝛼𝑟𝑚𝑎𝑥

. Note that each push operation processes 𝑑𝑢 nodes and thus
costs 𝑂 (𝑑𝑢), which is denoted by 𝑐𝑝𝑢𝑠ℎ . Consequently, the cost of

pushes on 𝑢 is bounded by
𝜋 (𝑠,𝑢)𝑐𝑝𝑢𝑠ℎ

𝛼𝑟𝑚𝑎𝑥
, and the total cost is bounded

by 𝑂 (∑𝑣∈𝑉
𝜋 (𝑠,𝑢)𝑐𝑝𝑢𝑠ℎ

𝛼𝑟𝑚𝑎𝑥
) = 𝑂 (𝑐𝑝𝑢𝑠ℎ𝛼𝑟𝑚𝑎𝑥

). Following the results in [33],
the cost of push 𝑐𝑝𝑢𝑠ℎ can be amortized as the average degree 𝑑,
which completes the proof. □

Based on Lemma 5.4, we can analyze the time complexity for all
the proposed methods. In particular, the time costs of Algorithm 4
consist of two parts, the forward push stage and the Monte Carlo
stage. For a fixed 𝑟𝑚𝑎𝑥 , the time complexity of the deterministic
forward push is bounded by 𝑂 (log𝑛

𝛼𝑟𝑚𝑎𝑥
). The Monte Carlo stage

samples 𝑟𝑚𝑎𝑥𝑊 random spanning forests. The cost of sampling
a spanning forest is 𝜏 ; and the estimation process takes 𝑂 (𝑛) in
total, which is typically lower than 𝜏 . Therefore, the Monte Carlo
stage takes 𝑂 (𝑟𝑚𝑎𝑥𝑊𝜏) time. As a result, the total time complexity
of Algorithm 4 is 𝑂 (log𝑛

𝛼𝑟𝑚𝑎𝑥
+ 𝑟𝑚𝑎𝑥𝑊𝜏). This can be minimized by

setting 𝑟𝑚𝑎𝑥 = 𝜖√
𝛼𝑛𝜏

, which results in an 𝑂 (1
𝜖

√
𝑛 log𝑛𝜏

𝛼) complexity.
Similarly, for SPEEDL and SPEEDLV, the time costs include two

parts: the time spent for forward push and the time taken for sampling
spanning forests. By a similar analysis shown in [49], we can easily
derive that the total time complexity of SPEEDL and SPEEDLV is
𝑂 (1

𝛼 𝑛𝑙𝑜𝑔𝑛𝑙𝑜𝑔
1
𝜖 + 𝑙𝑜𝑔𝑛𝜏). As can be seen, the time complexity of our

algorithms has a weak dependency on the parameter 𝛼 , compared to
the complexity of FORA [46] which is𝑂 (𝑛𝑙𝑜𝑔𝑛𝛼𝜖), and the complexity

of SPEEDPPR [49] which is𝑂 (1
𝛼 𝑛𝑙𝑜𝑔𝑛𝑙𝑜𝑔

1
𝜖 +

𝑛𝑙𝑜𝑔𝑛
𝛼). Therefore, our

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang

algorithms can be much faster than the previous algorithms when 𝛼

is small, which are also confirmed in our experiments.

5.3 Indexing spanning forests
Note that an optimization of FORA and SPEEDPPR is to pre-compute
𝛼-random walks, and then maintain the end-node for each 𝛼-random
walk as an index. Such index-based methods are called FORA+ [46]
and SPEEDPPR+ [49], respectively. To answer the single source
PPR query, both FORA+ and SPEEDPPR+ can use the index to es-
timate PPR without simulating 𝛼-random walks online. For space
overhead, FORA+ requires 𝑑𝑣/𝜖 𝛼-random walks for each node 𝑣 .
Thus, the total number of 𝛼-random walks is

∑
𝑢∈𝑉 𝑑𝑢/𝜖 = 2𝑚/𝜖.

The index size of FORA+ can be further bounded by 𝑂 (𝑛 log𝑛
𝜖) with

a relative error 𝜖, given that 𝑚 = 𝑂 (𝑛 log𝑛) on the scale free graphs.
For SPEEDPPR+, it only requires 𝑑𝑣 random walks for each 𝑣 , thus
its space overhead is 𝑂 (𝑛 log𝑛) [49].

Similar to FORA+ and SPEEDPPR+, we can also devise index-
based variants of our online algorithms FORALV+ and SPEEDLV+.
Specifically, we can first generate 𝑂 (log𝑛) random spanning forests.
Note that similar to SPEEDPPR+, we can derive that 𝑂 (log𝑛) ran-
dom spanning forests is sufficient to obtain a good estimation ac-
curacy. Then, for each spanning forest, we maintain the root in-
formation for each node as the index. To implement the improved
estimator in Algorithm 4 (Lines 10-11), we further maintains the
total degree information in each connected component of a spanning
forest. The total space overhead of our index is 𝑂 (𝑛 log𝑛). Note
that to estimate PPR, sampling a spanning forest by loop-erased
𝛼-random walk is roughly equal to sampling 𝑛 𝛼-random walks from
each node. Because we can get 𝑛 “samples of (𝑖 rooted in 𝑗)” for
a spanning forest, while for an 𝛼-random walk we only get one
sample, i.e., the end node of the random walk. Thus, the number
of samples needed by our algorithm is around 1/𝑛 times FORA+
and SPEEDPPR+. Since sampling a spanning forest (𝜏) is much
faster than sampling 𝑛 𝛼-random walks (𝑛𝛼) (especially for a small
𝛼), the index construction time of our algorithm is much lower than
FORA+ and SPEEDPPR+, as confirmed in our experiments. As a
result, compared to FORA+ and SPEEDPPR+, the key advantage of
our index-based methods is that they can significantly save index-
building time especially when 𝛼 is small (e.g. 𝛼 = 0.01), which is
also confirmed in our experiments.

6 SINGLE TARGET PPR QUERY
In this section, we focus on the single target PPR query. Compared
to the single source PPR query, there are several differences which
require more effort to design the single target PPR computation
algorithm.

6.1 Existing solutions
Backward push. The backward push algorithm is an analogy of the
forward push algorithm [3]. As shown in Algorithm 5, it also main-
tains two vectors reserve 𝑞𝑡 (𝑣) and residual 𝑟 (𝑣). Then, a slightly
different push procedure is applied for each node with 𝑟 (𝑣) > 𝑟𝑚𝑎𝑥 ,

Algorithm 5: The Backward Push Algorithm
Input: Graph 𝐺 , source node 𝑡 , decay factor 𝛼 , threshold 𝑟𝑚𝑎𝑥

Output: Reserve 𝑞𝑡 [𝑣] and residual 𝑟 [𝑣] for all 𝑣 ∈ 𝑉
1 for each 𝑢 ∈ 𝑉 do
2 𝑟 [𝑢] = 0, 𝑞𝑡 [𝑢] = 0

3 𝑟 [𝑡] = 1;
4 while ∃𝑢 ∈ 𝑉 such that 𝑟 [𝑢] ≥ 𝑟𝑚𝑎𝑥 do
5 𝑞𝑠 [𝑢] += 𝛼𝑟 [𝑢];
6 for each 𝑧 ∈ 𝑁 (𝑢) do
7 𝑟 [𝑧] += (1 − 𝛼)𝑤𝑢𝑧𝑟 [𝑢]/𝑑𝑤 ;

8 𝑟 [𝑢] = 0;

until there is no node meeting 𝑟 (𝑣) > 𝑟𝑚𝑎𝑥 (Lines 4-8). The follow-
ing invariant is maintained during the backward push process:

𝜋 (𝑣, 𝑡) = 𝑞𝑡 [𝑣] +
∑
𝑢∈𝑉

𝜋 (𝑣,𝑢)𝑟 (𝑢). (13)

Suppose that a push operation consumes time 𝑐𝑝𝑢𝑠ℎ , which is roughly

𝑂 (log𝑛) in an average case [3], the algorithm runs in 𝑂 (𝜋 (𝑡)𝑐𝑝𝑢𝑠ℎ𝛼𝑟𝑚𝑎𝑥
)

time for a target node 𝑡 . Unlike the forward push algorithm, the
backward push algorithm can guarantee an additive error [3].

Randomized backward push. The randomized backward push al-
gorithm introduces a sampling procedure into Algorithm 5 [43].
Specifically, in each push operation, a node sends residuals only
to a small fraction of its randomly sampled neighbors, thus it can
improve the efficiency. The time complexity of this algorithm is
(𝑛𝜋 (𝑡)𝛼𝜖) for a relative error 𝜖. The limitation of this algorithm is that
it needs to take additional cost for sampling in each push operation.
Moreover, its time complexity still depends on 𝛼 .

6.2 The proposed algorithm
Here we develop two two-stage algorithms to answer the single target
PPR query based on backward push and the proposed random forests
sampling technique. Compared to the algorithms for processing
single source PPR query, there are two differences in designing
an algorithm for answering the single target PPR query. First, the
time complexity of the backward push algorithm depends on 𝜋 (𝑡)
of the target node 𝑡 and it varies heavily over all nodes. For nodes
with small 𝜋 (𝑡) (the low-degree nodes often have a small 𝜋 (𝑡)), the
backward push procedure terminates very fast. Consequently, there
is no need to apply any sampling technique to speed up the algorithm
for those nodes. For nodes with large 𝜋 (𝑡) (the high-degree nodes
often have a large 𝜋 (𝑡)), the backward push procedure often takes
a long time especially when 𝛼 is small. Therefore, in this case,
we can devise two-stage algorithms based on backward push and
sampling random spanning forests. Second, unlike the forward push
algorithm used in the single source PPR query problem, an additive
error 𝑟𝑚𝑎𝑥 can be guaranteed by the backward push algorithm. To
achieve a relative error, we can set 𝑟𝑚𝑎𝑥 as 𝜖

𝑛 , resulting in that the

time complexity of the backward push is 𝑂 (𝑛𝜋 (𝑡)𝑐𝑝𝑢𝑠ℎ𝛼𝜖).
Implementation details. The pseudo code of our algorithms is
shown in Algorithm 6. Algorithm 6 includes two stages including
deterministic backward push and sampling random spanning forests.
First, Algorithm 6 performs backward push to compute the residual

Efficient Personalized PageRank Computation: A Spanning Forests Sampling Based Approach SIGMOD ’22, June 12–17, 2022, Philadelphia, PA

Algorithm 6: BACKL (BACKLV)
Input: Graph 𝐺 = (𝑉 , 𝐸) , target node 𝑡 , decay factor 𝛼 , threshold

𝑟𝑚𝑎𝑥 , relative error threshold 𝜖 , PPR value threshold 𝜇

Output: The estimated PPR 𝜋 (𝑣, 𝑡) for all 𝑣 ∈ 𝑉
1 Invoke backward push with input parameter 𝐺 , 𝑡 , 𝛼 and 𝑟𝑚𝑎𝑥 ;
2 Let 𝑟 (𝑣) , 𝜋 (𝑣, 𝑡) be the returned residue and reserve for all 𝑣 ∈ 𝑉 ;

3 Let𝑊 =
(2𝜖/3+2) ·𝑙𝑜𝑔 (2/𝑝𝑓)

𝜖2 ·𝜇 ;

4 Let 𝜔 = ⌈𝑟𝑚𝑎𝑥 ·𝑊 ⌉;
5 for 𝑖 = 1 : 𝜔 do
6 Simulate a loop-erased walk on 𝐺 ;
7 Let 𝐹𝑖 be the returned random spanning forests;
8 for each node 𝑣 ∈ 𝑉 do
9 Let𝑉𝑡 be subset of the partition Φ(𝐹𝑖) which 𝑡 belongs to

and the root is 𝑢;
10 if apply variance reduction then
11 𝑎𝑣 =

∑
𝑢∈𝑉𝑡 𝑟 (𝑢)𝑑𝑢∑

𝑢∈𝑉𝑡 𝑑𝑢
;

12 else
13 𝑎𝑣 = 𝑟 (𝑢);
14 𝜋 (𝑣, 𝑡) = 𝜋 (𝑣, 𝑡) + 𝑎𝑣/𝜔;

15 return 𝜋 (𝑣, 𝑡) for all 𝑣 ∈ 𝑉 ;

and reserve for each node (Lines 1-2). Then, Algorithm 6 simu-
lates the loop-erased 𝛼-random walk technique to sample random
spanning forests (Lines 5-14). Similar to Algorithm 4, Algorithm 6
can also use the basic estimating technique (Lines 10-11) and the
improved estimating technique (Lines 12-13) to achieve unbiased
estimations of PPR values. For convenience, Algorithm 6 with the
basic estimator and the improved estimator are referred to as BACKL
and BACKLV respectively.

Analysis of the algorithm. For a node 𝑣 , let 𝑋𝑢 be an indicator
random variable that equals 1 if 𝑣 is rooted in 𝑢, equals 0 other-
wise. Let 𝑋𝑠𝑡 be the co-occurrence random variable that equals
1 when 𝑠 and 𝑡 are in the same connected component of a span-
ning forest, equals 0 otherwise. 𝑌1 =

∑
𝑢∈𝑉 𝑟 (𝑢)𝑋𝑢 for BACKL and

𝑌2 =
∑
𝑢∈𝑉 𝑟 (𝑢)𝑋𝑢𝑣 𝑑𝑢∑

𝑘∈𝑉𝑣 𝑑𝑘
for BACKLV. Similar to our previous

analysis for the single source PPR query, we can easily derive that
𝐸 [𝑌1] = 𝐸 [𝑌2] =

∑
𝑢∈𝑉

𝜋 (𝑣,𝑢)𝑟 (𝑢). Therefore, the variable 𝑎𝑣 used in

BACKL and BACKLV is an unbiased estimator of
∑

𝑢∈𝑉
𝜋 (𝑣,𝑢)𝑟 (𝑢).

Below, we apply the Chernoff bound to analyze the relative error
guarantee of our algorithms.

THEOREM 6.1. For any node 𝑣 with 𝜋 (𝑣, 𝑡) > 𝜇, both BACKL
and BACKLV return an approximate PPR value 𝜋 (𝑣, 𝑡) satisfying
|𝜋 (𝑣, 𝑡) − 𝜋 (𝑣, 𝑡) | ≤ 𝜖𝜋 (𝑣, 𝑡) with probability at least 1 − 𝑝 𝑓 .

PROOF. Let 𝑌1 and 𝑌2 as defined before. After performing back-

ward push, we have 𝑌1 ≤ 𝑟𝑚𝑎𝑥 and 𝑌2 =

∑
𝑢∈𝑉𝑡 𝑟 (𝑣)𝑑𝑢∑

𝑢∈𝑉𝑡 𝑑𝑢
≤ 𝑟𝑚𝑎𝑥 .

The following proof is the same for both 𝑌1 and 𝑌2. We take 𝑌1
as an example. Let 𝑍 = 𝑌1/𝑟𝑚𝑎𝑥 . Clearly, 𝑍 ∈ [0, 1]. Then, we
have 𝑉𝑎𝑟 [𝑍] = 𝐸 [𝑍 2] − 𝐸 [𝑍]2 ≤ 𝐸 [𝑍 2] ≤ 𝐸 [𝑍] ≤ 𝜋 (𝑠,𝑡)

𝑟𝑚𝑎𝑥
, and

thus 𝑉𝑎𝑟 [𝑌1] ≤ 𝑟𝑚𝑎𝑥𝜋 (𝑠, 𝑡). We can apply Chernoff bound in Theo-
rem 5.2 to analyze the concentration behaviour of 𝑌1. By substituting

Table 1: Datasets

Type Dataset 𝑛 𝑚 𝑑

Youtube 1,134,890 2,987,624 5.27
unweighted Pokec 1,632,803 22,301,964 27.32

graphs LiveJournal 4,846,609 42,851,237 17.68
Orkut 3,072,441 117,185,083 76.28
Twitter 41,652,230 1,202,513,046 57.74

weighted DBLP 1,824,701 8,344,615 32.32
graphs StackOverflow 2,584,164 28,142,395 37.02

𝑀 = 𝑟𝑚𝑎𝑥 , we have

Pr(|𝑌1 − 𝐸 [𝑌1] | ≥ 𝜆) ≤ 2𝑒𝑥𝑝 (− 𝜆2𝑛𝑟
𝑟𝑚𝑎𝑥 (2𝜋 (𝑠, 𝑡) + 2𝜆/3)).

Let 𝜆 = 𝜖 ·𝜋 (𝑠, 𝑡), 𝑛𝑟 =
𝑟𝑚𝑎𝑥 (2𝜖/3+2) ·𝑙𝑜𝑔 (2/𝑝𝑓)

𝜖2 ·𝜇 . By 𝜋 (𝑠, 𝑡) −𝜋 (𝑠, 𝑡) =
𝑟𝑚𝑎𝑥 (𝑌1 − 𝐸 [𝑌1]), for each node 𝑣 with 𝜋 (𝑣, 𝑡) > 𝜇, the algorithm
produces 𝜋 (𝑣, 𝑡) which satisfies 𝜋 (𝑣, 𝑡) − 𝜋 (𝑣, 𝑡) ≤ 𝜖𝜋 (𝑣, 𝑡) with
probability at least 1 − 𝑝 𝑓 . □

Note that although both BACKL and BACKLV can guarantee the
same relative error as shown in Theorem 6.1, BACKLV has a smaller
variance based on the improved estimating technique. Therefore,
we focus mainly on the BACKLV algorithm in the remaining of
this paper. The time complexity of BACKLV for a target node 𝑡

consists of two parts. In the backward push stage, BACKLV takes

𝑂 (𝑐𝑝𝑢𝑠ℎ𝜋 (𝑡)𝛼𝑟𝑚𝑎𝑥
) time, while in the Monte Carlo stage, BACKLV needs

to sampling 𝑟𝑚𝑎𝑥𝑊 spanning forests which consumes 𝑂 (𝑟𝑚𝑎𝑥𝑊𝜏)
time in total. Thus, the time complexity of BACKLV is𝑂 (𝑐𝑝𝑢𝑠ℎ𝜋 (𝑡)𝛼𝑟𝑚𝑎𝑥

+

𝑟𝑚𝑎𝑥𝑊𝜏), which can be minimized to 𝑂 (1
𝜖

√
𝑐𝑝𝑢𝑠ℎ𝑛𝑙𝑜𝑔𝑛𝜏

𝛼) by setting
an appropriate 𝑟𝑚𝑎𝑥 .

7 EXPERIMENTS
7.1 Experimental setup
Datasets and query sets. We use 5 real-life datasets including
Youtube, Pokec, LiveJournal, Orkut and Twitter, which are widely
used in previous studies [31, 43, 46, 49]. We also include 2 real-
life general weighted graphs DBLP and StackOverflow. Specifically,
DBLP is a collaboration network where each node represents an
author, each edge represents collaboration relationship and the edge
weight is the number of co-authored papers. StackOverflow is a
user interaction network from the StackExchange site. Each node
represents a user, each edge denotes an interaction relationship and
the edge weight is the number of user interactions. The detailed sta-
tistics of these datasets are summarized in Table 1 . All these datasets
can be obtained from [30]. For the single source query problem, as
used in [46], we perform queries using 50 source nodes generated
uniformly at random for all competitors and take the average query
time as the final result. For the single target query, the query time
is highly dependent on the chosen target node. For the low-degree
nodes, it terminates fast by only applying backward push, while for
the high-degree nodes, it spends a long time for the backward push
such that sampling technique is necessary in this case. We perform
queries on 50 target nodes generated uniformly at random from the

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang

top 10% highest degree nodes and again take the average query time
as the final result.

Different algorithms. For single source PPR query, we compare
our algorithms with the state-of-the-art algorithms FORA [46] and
SPEEDPPR [49]. We do not include other previous algorithms in the
experiments because all of them are outperformed by SPEEDPPR
[49]. For FORA and SPEEDPPR, we use their original implementa-
tion in [46] and [49] respectively. For our solutions, we implement
4 different algorithms which are FORAL, FORALV, SPEEDL, and
SPEEDLV. FORAL and FORALV denote Algorithm 4 with the basic
estimator and the improved estimator respectively. Both of them
use the balanced forward push in Line 1 of Algorithm 4. SPEEDL
(SPEEDLV) is an improved algorithm for FORAL (FORALV) which
is equipped with an improved forward push algorithm proposed in
[49].

For single target PPR query, we compare our two-stage algorithm
with the state-of-the-art algorithms BACK and RBACK. BACK is
the backward push algorithm which can guarantee an additive error
𝜖. To achieve a relative error, we only need to set the threshold
as 𝜖/𝑛 for BACK. RBACK [43] is the randomized backward push
which can prune nodes with small residues in each push operation.
However, RBACK needs to take additional time to preform random
sampling. We implement BACK and RBACK by ourselves, as no
available implementation of these algorithms are provided. For our
algorithm, we implement BACKLV which is Algorithm 6 with an
improved estimator. Note that since BACKL is clearly worse than
BACKLV, we did not implement BACKL in our experiments.

Parameters. Since we focus mainly on small 𝛼 , we set the param-
eter 𝛼 = 0.01 in our experiments. Moreover, many existing PPR-
based graph mining algorithms often work very well when 𝛼 = 0.01
[13, 40, 50]. We will study the performance of our algorithms with
varying 𝛼 and also with very small 𝛼 (e.g., 𝛼 = 10−5). In addition,
since the parameter 𝛼 is typically set to 0.2 in most existing algo-
rithms [43, 46, 49], we also consider this parameter setting for a
fair comparison with those baseline algorithms. For the approximate
single source/target query, there is a parameter 𝜖 which controls the
relative error. We set 𝜖 as 0.5 by default; and vary 𝜖 from 0.1 to 0.5.

7.2 Effect of the parameter 𝛼
We start by studying the performance of four basic algorithms with
varying 𝛼 , including the forward push (FP), backward push (BP),
𝛼-random walks (RW) and loop-erased 𝛼-random walks (LERW), be-
cause FORA, SPEEDPPR, and our algorithms are based on these four
basic algorithms. For both forward push and backward push, we set
𝑟max = 10−12. We run 𝛼-random walks from all nodes and one loop-
erased 𝛼-random walk for 10 times and report the total time as the
results. We show the results on two large datasets: LiveJournal and
Orkut. The results on the other datasets are consistent. As shown in
Fig. 5, the runtime of the forward push algorithm, the backward push
algorithm, and the 𝛼-random walk algorithm grow rapidly when 𝛼

decreases, while the running time of our loop-erased 𝛼-random walk
is insensitive w.r.t. 𝛼 . These results confirm our previous analysis
that (1) both the performance of the local push methods and the
Monte Carlo methods by simulating 𝛼-random walk have a strong
dependency on 𝛼 , and (2) our loop-erased 𝛼-random walk based
algorithm is robust w.r.t. 𝛼 . We can also observe that when 𝛼 = 0.01,

10

100

1000

 0.01 0.05 0.1 0.15 0.2

q
u

er
y

 t
im

e
(s

ec
)

α

FP

BP

RW

LERW

(a) LiveJournal

10

100

1000

 0.01 0.05 0.1 0.15 0.2

q
u

er
y

 t
im

e
(s

ec
)

α

FP

BP

RW

LERW

(b) Orkut

Figure 5: Runtime of four basic algorithms (vary 𝛼)

1e-4

1e-3

1e-2

 0.01 0.05 0.1 0.15 0.2

C
o

n
d

u
c
ta

n
c
e

α

(a) LiveJournal

0.01

0.1

 0.01 0.05 0.1 0.15 0.2

C
o

n
d

u
c
ta

n
c
e

α

(b) Orkut

Figure 6: Conductance with varying 𝛼

the running time of the 𝛼-random walk algorithm is three orders
of magnitude slower than that of the loop-erased 𝛼-random walk
algorithm. These results suggest that the Monte Carlo methods by
simulating loop-erased 𝛼-random walk is more efficient than by
simulating 𝛼-random walk when 𝛼 is small (e.g., 𝛼 = 0.01). Note
that personalized PageRank with a small 𝛼 may be useful in many
graph analysis tasks. Below, we demonstrate the effectiveness of the
personalized PageRank with a small 𝛼 in a local graph clustering
application.

For local graph clustering, we first compute personalized PageR-
ank values from a source node 𝑠, and then sort the nodes based on
their degree-normalized personalized PageRank values. After that,
a sweep cut procedure is applied to produce clusters [4]. We make
use of the well-known conductance metric [4] to measure the quality
of the local clustering (a good clustering often has a small conduc-
tance value). We randomly choose 50 nodes as the source nodes
and take the average conductance over 50 nodes as the final result.
Fig. 6 shows the conductance with varying 𝛼 from 0.2 to 0.01 on
LiveJournal and Orkut. Similar results can also be observed in the
other datasets. As can be seen, the conductance decreases sharply as
𝛼 decreases. These results indicate that a smaller 𝛼 will produce a
better clustering, which are also confirmed in [40]. Therefore, it is
important to study the problem of computing personalized PageRank
with a small 𝛼 .

7.3 Single source query
In this experiment, we compare the performance of different algo-
rithms for answering the single source query. The results on five
datasets are reported in Fig. 7. For a better understanding of these re-
sults, we first focus on comparing the performance of FORA, FORAL,
and FORALV. We observe that compared to FORA, both FORAL and
FORALV obtain around 10× speedups when 𝛼 = 0.2 and around
100× speedups when 𝛼 = 0.01 on all five datasets. FORALV spends
slightly more time than FORAL because it includes an additional
computational cost of the sum over partitions. For large datasets, for
example on Twitter, FORA runs out of 24 hours while both FORAL
and FORALV take only thousands of seconds. In general, the runtime
of all algorithms increase with decreasing 𝜖, because all algorithms
take more time to achieve a small error.

Second, we compare the runtime of SPEEDPPR, SPEEDL and
SPEEDLV. Note that SPEEDPPR applies an optimized version of

Efficient Personalized PageRank Computation: A Spanning Forests Sampling Based Approach SIGMOD ’22, June 12–17, 2022, Philadelphia, PA

10
0

10
1

10
2

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

Source Youtube α=0.2

(a) Youtube, 𝛼=0.2

10
0

10
1

10
2

10
3

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

Source pokec α=0.2

(b) Pokec, 𝛼=0.2

10
0

10
1

10
2

10
3

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

Source livejournal α=0.2

(c) LiveJournal, 𝛼=0.2

10
0

10
1

10
2

10
3

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

Source orkut α=0.2

(d) Orkut, 𝛼=0.2

10
1

10
2

10
3

10
4

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

Source twitter α=0.2

(e) Twitter, 𝛼=0.2

10
1

10
2

10
3

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

Source Youtube α=0.01

(f) Youtube, 𝛼=0.01

10
1

10
2

10
3

10
4

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

Source pokec α=0.01

(g) Pokec, 𝛼=0.01

10
1

10
2

10
3

10
4

10
5

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

Source livejournal α=0.01

(h) LiveJournal, 𝛼=0.01

10
1

10
2

10
3

10
4

10
5

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

Source orkut α=0.01

(i) Orkut, 𝛼=0.01

10
2

10
3

10
4

10
5

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

Source twitter α=0.01

(j) Twitter, 𝛼=0.01

Figure 7: Runtime of different algorithms for answering the single source query
forward push which is often more efficient, but it cannot apply the
theoretical bound to balance the time spent in the Monte Carlo
phase and the forward push phase (as FORA does). Alternatively,
SPEEDPPR balance the time spent in the two phases based on an
estimation of the 𝛼-random walk time. SPEEDL and SPEEDLV also
adopt a similar idea to balance the time. From Fig. 7, we can see
that SPEEDL is the fastest algorithm among all the methods for both
𝛼 = 0.2 and 𝛼 = 0.01. On the largest dataset Twitter, both SPEEDL
and SPEEDLV are an order of magnitude faster than SPEEDPPR
for 𝛼 = 0.01. These results confirm our theoretical analysis that by
replacing traditional 𝛼-random walks with loop-erased 𝛼-random
walks can achieve a considerable speedup (especially for the cases
of small 𝛼 values).

To further evaluate the effectiveness of our loop-erased 𝛼-random
walk based algorithms, we compare the 𝐿1 errors of different algo-
rithms. Here the 𝐿1 error is deified as

∑
𝑣∈𝑉 |�̃� (𝑠, 𝑣) − 𝜋 (𝑠, 𝑣) | for all

𝑣 ∈ 𝑉 , where �̃� (𝑠, 𝑣) is the personalized PageRank value estimated
by different algorithms and 𝜋 (𝑠, 𝑣) is the exact personalized PageR-
ank value. Note that since both FORA and SPEEDPPR achieve the
same relative error bounds, we focus mainly on comparing FORA,
FORAL, and FORALV to see whether the loop-erased 𝛼-random walk
based algorithms can also achieve a good estimating accuracy. Simi-
lar results can also be obtained by comparing SPEEDPPR, SPEEDL,
SPEEDLV. Fig. 8 shows the results on LiveJournal and Orkut. The
results on the other datasets are consistent. As can be seen, FORALV
achieves the smallest 𝐿1 errors for both 𝛼 = 0.2 and 𝛼 = 0.01, fol-
lowed by FORA and FORAL. Note that FORAL is worse than FORA,
because the the random variables used in FORAL is dependent. How-
ever, after using our variance reduction technique, the accuracy can
be significantly improved. SPEEDPPR, SPEEDL, and SPEEDLV fol-
low a similar trend; their 𝐿1-errors are slightly smaller than FORA,
FORAL, and FORALV respectively, because they conduct more de-
terministic computing. These results suggest that our loop-erased
𝛼-random walk based algorithms can achieve a very good estimating
accuracy.

7.4 Index-based method for single source query
In this experiment, we evaluate the performance of different index-
based algorithms. The index-based variants for FORA and SPEEDPPR
are denoted by FORA+ [46] and SPEEDPPR+ [49] respectively. We
implement two index-based variants for our algorithms FORALV

10
-3

10
-2

10
-1

 0.1 0.2 0.3 0.4 0.5

L
1

-e
rr

o
r

ε

FORA

FORAL

FORALV

SPEEDPPR

SPEEDL

SPEEDLV

(a) LiveJournal, 𝛼 = 0.2

10
-3

10
-2

10
-1

 0.1 0.2 0.3 0.4 0.5

L
1

-e
rr

o
r

ε

FORA

FORAL

FORALV

SPEEDPPR

SPEEDL

SPEEDLV

(b) Orkut, 𝛼 = 0.2

10
-3

10
-2

10
-1

10
0

 0.1 0.2 0.3 0.4 0.5

L
1

-e
rr

o
r

ε

FORA

FORAL

FORALV

SPEEDPPR

SPEEDL

SPEEDLV

(c) LiveJournal, 𝛼 = 0.01

10
-3

10
-2

10
-1

10
0

 0.1 0.2 0.3 0.4 0.5

L
1

-e
rr

o
r

ε

FORA

FORAL

FORALV

SPEEDPPR

SPEEDL

SPEEDLV

(d) Orkut, 𝛼 = 0.01

Figure 8: Comparison of the 𝐿1-error of different algorithms

and SPEEDLV, denoted by FORALV+ and SPEEDLV+ respectively,
because FORALV (SPEEDLV) is shown to be better than FORAL
(SPEEDL).

We first compare the index construction time and index size of
different algorithms. Note that both FORA+ and SPEEDPPR+ de-
termine the index size based on theoretical results [46, 49]. FORA+
maintains 𝑂 (𝑛 log𝑛/𝜖) 𝛼-random walks [46], while SPEEDPPR+
stores around 𝑂 (𝑛 log𝑛) 𝛼-random walks [49]. Since the perfor-
mance of sampling 𝑛 𝛼-random walks (from 𝑛 nodes) is similar to
that of sampling a spanning forest, FORALV and SPEEDLV main-
tain 𝑂 (log𝑛/𝜖) and 𝑂 (log𝑛) spanning forests respectively. Fig. 9
shows the index construction time on LiveJournal and Orkut. The
results on other datasets are consistent. As can be seen, SPEEDLV+
achieves the lowest index construction time under all parameter
settings, followed by FORALV+, SPEEDPPR+, and FORA+. When
𝛼 = 0.01, SPEEDLV+ is around an order of magnitude faster than
SPEEDPPR+. These results demonstrate that our index-based algo-
rithms are much more efficient than the state-of-the-art algorithms to
construct the index, which also confirm our analysis in Section 5.3.
Fig. 10 reports the index size of different algorithms on LiveJournal
and Orkut. From Fig. 10, we can see that our index-based algorithms
can achieve similar index size as the state-of-the-art algorithms. This
is because for a spanning forest sample, we need to store the root
for each node, while for a random walk sample, we only need to
store the end node. Thus, although the number of samples needed by

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang

10
1

10
2

10
3

 0.1 0.2 0.3 0.4 0.5

in
d

ex
 c

o
n

st
ru

ct
io

n
 t

im
e

(s
ec

)

ε

FORA+

FORALV+

SPEEDPPR+

SPEEDLV+

(a) LiveJournal, 𝛼 = 0.2

10
1

10
2

10
3

 0.1 0.2 0.3 0.4 0.5

in
d

ex
 c

o
n

st
ru

ct
io

n
 t

im
e

(s
ec

)

ε

FORA+

FORALV+

SPEEDPPR+

SPEEDLV+

(b) Orkut, 𝛼 = 0.2

10
1

10
2

10
3

10
4

10
5

 0.1 0.2 0.3 0.4 0.5

in
d

ex
 c

o
n

st
ru

ct
io

n
 t

im
e

(s
ec

)

ε

FORA+

FORALV+

SPEEDPPR+

SPEEDLV+

(c) LiveJournal, 𝛼 = 0.01

10
2

10
3

10
4

10
5

 0.1 0.2 0.3 0.4 0.5

in
d

ex
 c

o
n

st
ru

ct
io

n
 t

im
e

(s
ec

)

ε

FORA+

FORALV+

SPEEDPPR+

SPEEDLV+

(d) Orkut, 𝛼 = 0.01

Figure 9: Comparison of index construction time

 0

 1000

 2000

Livejournal Orkut

in
de

x
si

ze
 (M

B
)

Graph Size
FORA+

FORALV+
SPEEDPPR+

SPEEDLV+

(a) 𝛼 = 0.2

 0

 1000

 2000

Livejournal Orkut

in
de

x
si

ze
 (M

B
)

Graph Size
FORA+

FORALV+
SPEEDPPR+

SPEEDLV+

(b) 𝛼 = 0.01

Figure 10: Comparison of index size

10
0

10
1

10
2

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

FORA+

FORALV+

SPEEDPPR+

SPEEDLV+

FORALV

SPEEDLV

(a) LiveJournal, 𝛼 = 0.2

10
0

10
1

10
2

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

FORA+

FORALV+

SPEEDPPR+

SPEEDLV+

FORALV

SPEEDLV

(b) Orkut, 𝛼 = 0.2

10
1

10
2

10
3

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

FORA+

FORALV+

SPEEDPPR+

SPEEDLV+

FORALV

SPEEDLV

(c) LiveJournal, 𝛼 = 0.01

10
1

10
2

10
3

10
4

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

FORA+

FORALV+

SPEEDPPR+

SPEEDLV+

FORALV

SPEEDLV

(d) Orkut, 𝛼 = 0.01

Figure 11: Runtime of different index-based algorithms

FORALV+ (SPEEDLV+) is around 1/𝑛 times FORA+ (SPEEDPPR+),
the total space costs of them are nearly the same. Moreover, the
space usages of all the index-based algorithms are comparable w.r.t.
the graph size. These results further confirm that our index-based
algorithms are space-efficient.

Second, we evaluate the query processing time of different index-
based algorithms. The results are shown in Fig. 11. As can be
seen, FORALV+ and SPEEDLV+ can achieve similar performance
as FORA+ and SPEEDPPR+, respectively. Moreover, we also add
the online algorithms FORALV and SPEEDLV for comparison. We
can observe that all the index-based algorithms are faster than their
online versions. Note that FORALV+ and SPEEDLV+ are slightly
slower than FORA+ and SPEEDPPR+ respectively, because our al-
gorithms takes additional cost to sum the results over the partitions
of random spanning forests.

In summary, our index-based algorithms can achieve similar query
processing time and similar index size over the state-of-the-art index-
based algorithms. However, our index can be constructed within
much lower time than those of the state-of-the-art algorithms.

7.5 Single target query
In this experiment, we compare the performance of BACK, RBACK,
and BACKLV for answering the single target query. Fig. 12 shows
the runtime of these three algorithms on five datasets. As shown
in Fig. 12, when 𝛼 = 0.2, BACKLV degrades to BACK. This is
because to achieve high precision, performing a backward push
is often faster than sampling a random sampling forest when 𝛼 =

0.2. Therefore, we conclude that in this case Monte Carlo is not
necessary for getting a precise result. When 𝛼 = 0.01, we can see that
BACKLV is significantly faster than BACK and RBACK. In general,
BACKLV can achieve 1× ∼ 3× speedups over BACK on all datsets
under most parameter settings. We also observe that RBACK is
worse than BACK. The reason could be that (1) RBACK needs to use
additional computational cost for sampling, and (2) to achieve a high
precision, RBACK needs to set a small sampling threshold so that its
performance is similar to that of the power method, which is often
worse than the backward push algorithm. These results indicate that
for the small 𝛼 case, our loop-erased 𝛼-random walk based technique
can also be useful for processing the single target query.

7.6 Results on real-life weighted graphs
In all previous experiments, we only consider unweighted graphs (a
special case of weighted graph with all edge weights equaling 1) for
a fair comparison with the state-of-the-art algorithms. In this experi-
ment, we study the performance of different algorithms on general
weighted graphs. To this end, we re-implement all the baseline meth-
ods as the available implementations in [43, 46, 49] cannot support
general weighted graphs. The results of single source experiments on
DBLP and StackOverflow are shown in Fig.13 and Fig.14. Similar
results can also be observed on the other datasets. In general, the re-
sults on weighted graphs are consistent with our previous results on
unweighted graphs. FORAL and FORALV (SPEEDL and SPEEDLV)
have significantly less query time than FORA (SPEEDPPR). Our
best algorithm SPEEDLV is at least one order of magnitude faster
than the state-of-the-art algorithm (SPEEDPPR). The comparison of
empirical error is also similar to that on unweighted graphs. Our
SPEEDLV is clearly the winner with all parameter settings, and it
is much more accurate than SPEEDPPR. Note that although there is
a 𝑑𝑡 term in the error bound of FORALV and SPEEDLV, the practi-
cal error performance is significantly better than that of FORA and
SPEEDPPR as shown in Fig.14. The results of single target experi-
ments are depicted in Fig.15. When 𝛼 = 0.01, BACKLV achieves a
2× speed-up on both datasets, which is consistent with the previous
results on unweighted graphs.

7.7 Results with various query node distributions
Here we study the effect of query node distributions. To this end, we
consider three different node distributions to study how the degree
of query node affects the query time. Specifically, we independently
sample nodes uniformly from the whole node set, the top 10% high-
degree node set and the top 10% low-degree node set respectively.

Efficient Personalized PageRank Computation: A Spanning Forests Sampling Based Approach SIGMOD ’22, June 12–17, 2022, Philadelphia, PA

2

4

6

8

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

BACKLV

BACK

RBACK

(a) Youtube, 𝛼=0.2

10

20

30

40

50

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

BACKLV

BACK

RBACK

(b) Pokec, 𝛼=0.2

20

40

60

80

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

BACKLV

BACK

RBACK

(c) LiveJournal, 𝛼=0.2

50

100

150

200

250

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

BACKLV

BACK

RBACK

(d) Orkut, 𝛼=0.2

1k

2k

3k

4k

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

BACKLV

BACK

RBACK

(e) Twitter, 𝛼=0.2

40

80

120

160

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

BACKLV

BACK

RBACK

(f) Youtube, 𝛼=0.01

200

400

600

800

1000

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

BACKLV

BACK

RBACK

(g) Pokec, 𝛼=0.01

400

800

1200

1600

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

BACKLV

BACK

RBACK

(h) LiveJournal, 𝛼=0.01

1k

2k

3k

4k

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

BACKLV

BACK

RBACK

(i) Orkut, 𝛼=0.01

10k

20k

30k

40k

50k

60k

 0.1 0.2 0.3 0.4 0.5

q
u

e
ry

 t
im

e
 (

se
c
)

ε

BACKLV

BACK

RBACK

(j) Twitter, 𝛼=0.01

Figure 12: Runtime of different algorithms for answering the single target query

10
0

10
1

10
2

10
3

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

(a) DBLP, 𝛼 = 0.2

10
1

10
2

10
3

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

(b) StackOverflow, 𝛼 = 0.2

10
1

10
2

10
3

10
4

10
5

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

(c) DBLP, 𝛼 = 0.01

10
2

10
3

10
4

10
5

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDL

SPEEDLV

(d) StackOverflow, 𝛼 = 0.01

Figure 13: Runtime of different algorithms for answering the
single source query on general weighted graphs

10
-3

10
-2

10
-1

 0.1 0.2 0.3 0.4 0.5

L
1

-e
rr

o
r

ε

FORA

FORALV

FORAL

SPEEDPPR

SPEEDLV

SPEEDL

(a) DBLP, 𝛼 = 0.2

10
-3

10
-2

10
-1

 0.1 0.2 0.3 0.4 0.5

L
1

-e
rr

o
r

ε

FORA

FORAL

FORALV

SPEEDPPR

SPEEDL

SPEEDLV

(b) StackOverflow, 𝛼 = 0.2

10
-4

10
-3

10
-2

10
-1

10
0

 0.1 0.2 0.3 0.4 0.5

L
1

-e
rr

o
r

ε

FORA

FORAL

FORALV

SPEEDPPR

SPEEDL

SPEEDLV

(c) DBLP, 𝛼 = 0.01

10
-4

10
-3

10
-2

10
-1

10
0

 0.1 0.2 0.3 0.4 0.5

L
1

-e
rr

o
r

ε

FORA

FORAL

FORALV

SPEEDPPR

SPEEDL

SPEEDLV

(d) StackOverflow, 𝛼 = 0.01

Figure 14: Comparison of 𝐿1-error for answering the single
source query on general weighted graphs

In this experiment, we choose the best methods, SPEEDLV and
BACKLV, as two representative methods for single source query
and single target query respectively; the results for other methods
are consistent. To see the distribution of query time, we conduct
experiments on 1000 nodes and use box-plot to show the results.
The results are depicted in Fig.16. As can be seen, the query time of

5

10

15

20

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

BACKLV

BACK

RBACK

(a) DBLP, 𝛼 = 0.2

20

40

60

80

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

BACKLV

BACK

RBACK

(b) StackOverflow, 𝛼 = 0.2

100

200

300

400

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

BACKLV

BACK

RBACK

(c) DBLP, 𝛼 = 0.01

400

800

1200

1600

 0.1 0.2 0.3 0.4 0.5

q
u

er
y

 t
im

e
(s

ec
)

ε

BACKLV

BACK

RBACK

(d) StackOverflow, 𝛼 = 0.01

Figure 15: Runtime of different algorithms for answering the
single target query on general weighted graphs

single source algorithms always have a very small variance. However,
the query time of the single target algorithms are highly dependent
on the node degree; and the query time of low-degree nodes is
significantly lower than that of the high-degree nodes. For example,
on Pokec when 𝛼 = 0.01, it takes around 400𝑠 for high-degree nodes,
while all low-degree nodes take less than 1𝑠 to perform a query.
These results indicate that for single target query, we only need to
perform sampling to improve the query efficiency for high-degree
query nodes, while for low-degree nodes, there is no need to do
sampling.

7.8 Results with very small 𝛼
As discussed before, our algorithms are faster than existing methods
especially when 𝛼 is small. Previously, we only consider the case
when 𝛼 is relatively small (𝛼 = 0.01). In this experiment, we study
the case when 𝛼 is very small. Note that if 𝛼 tends to zero, the single
source PPR vector tends to a degree-weighted uniform distribution
𝜋 (𝑠,𝑢) = 𝑑𝑢

2𝑚 and the single target PPR vector tends to a constant
distribution 𝜋 (𝑢, 𝑡) =

𝑑𝑡
2𝑚 for all 𝑢 ∈ 𝑉 . Therefore, the degree-

weighted uniform distribution vector is a very simple baseline for
computing single source PPR vector when 𝛼 is very small. Note that
although the PPR vector is very close to a degree-weighted uniform

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang

0

1

2

3

4

SU SH SL TU TH TL

ti
m

e
(s

)

(a) Youtube, 𝛼 = 0.2

20

40

60

80

100

SU SH SL TU TH TL

ti
m

e
(s

)

(b) Youtube, 𝛼 = 0.01

0

5

10

15

20

25

SU SH SL TU TH TL

ti
m

e
(s

)

(c) Pokec, 𝛼 = 0.2

100

200

300

400

500

SU SH SL TU TH TL

ti
m

e
(s

)

(d) Pokec, 𝛼 = 0.01

Figure 16: Query time distribution of single source query
(SPEEDLV) and single target query (BACKLV). SU denotes single
source query, choosing nodes uniformly. SH (SL) denotes single
source query, choosing high (low) degree nodes uniformly. TU
denotes single target query, choosing nodes uniformly. TH (TL)
denotes single target query, choosing high (low) degree nodes
uniformly.

distribution when 𝛼 is very small, it can still provide more useful
information than such a degree-weighted uniform distribution for
node ranking and clustering due to the subtly difference between
them [50]. For example, when we consider the degree normalized
vector 𝜋 (𝑠,𝑢)

𝑑𝑢
, the simple baseline will be degraded as a constant

vector which is indistinguishable for all nodes (1/2𝑚 for all nodes).
However, as shown in [50], the degree-normalized PPR vector can
still produce effective rankings and clusterings even when 𝛼 = 10−6.

We vary 𝛼 from 10−1 to 10−5, and use the state-of-the-art deter-
ministic method in [49] to compute the ground-truth of the single
source PPR vector to an 𝐿1-error bound 10−9. After that, we cal-
culate the 𝐿1-error between SPEEDLV and the ground-truth PPR
vector, and also compute the 𝐿1-error for the simple baseline. We
randomly sample 50 nodes uniformly and take the average value the
final result. The results on Youtube and Pokec are shown in Fig. 17.
Similar results can also be observed on the other datasets. As can
be seen, the 𝐿1-error of SPEEDLV is at least two orders of magni-
tude lower than that of the baseline method with varying 𝛼 . These
results indicate that even for a very small 𝛼 , our algorithm can still
produce much more accurate results than the baseline method. In
addition, we can see that the 𝐿1-errors of both SPEEDLV and base-
line decrease as 𝛼 decreases. The reason could be that the results of
SPEEDLV, the baseline method, and the ground truth PPR converge
to the degree-weighted uniform distribution when 𝛼 is very small,
and thereby the 𝐿1-errors will be small. Fig. 17 also shows the time
overheads for computing the ground truth and the time consumption
by our SPEEDLV algorithm. We can see that the time costs by our
algorithm are much lower than the time overheads for computing
the ground truth. For a very small 𝛼 (𝛼 ≤ 10−4), SPEEDLV is at least
two orders of magnitude faster than the ground truth computation
algorithm [49]. These results indicate that our SPEEDLV algorithm
can achieve a very good trade-off between accuracy and runtime.

10
-6

10
-4

10
-2

10
0

10
-1

10
-2

10
-3

10
-4

10
-5

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

L
1
-e

rr
o
r

ti
m

e
 (

s)

α

SPEEDLV-error

UNIFORM-error

SPEEDLV-time

Ground-truth-time

(a) Youtube

10
-6

10
-4

10
-2

10
0

10
2

10
-1

10
-2

10
-3

10
-4

10
-5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

L
1

-e
rr

o
r

ti
m

e
 (

s)

α

SPEEDLV-error

UNIFORM-error

SPEEDLV-time

Ground-truth-time

(b) Pokec

Figure 17: Results with very small 𝛼 (solid lines denote the 𝐿1-
error, and dashed lines represent the runtime)

8 RELATED WORK
PageRank computation. Methods for computing personalized Page-
Rank can be divided into two categories: deterministic algorithms
and randomized approximate algorithms. For deterministic methods,
there are many studies that focus on matrix-based power methods
[25, 53]. Based on the power method, many different optimization
techniques were proposed. [19, 20] applied the Cheyshev polynomi-
als to accelerate the convergence rate. BEAR [39] preprocessed the
adjacency matrix so that there is a large and easy-to-invert submatrix
and also pre-computed several submatrix required to form an index.
BePI [29] improved BEAR by using the power method instead of
matrix inversion. TPA [52] was also an index-based iterative method
which used PageRank value to approximate the nodes that are far
from the source node. [34] developed a core-tree decomposition
technique to further improve the efficiency of the power method.
Also, there are a large number of local methods for computing per-
sonalized PageRank, notable examples including the forward push
method [4, 10] and the backward push method [3, 28, 33]. Although
much progress has been made, deterministic methods are still slow
for high-precision personalized PageRank computation.

For approximate methods, most of them are based on Monte Carlo
simulation [7]. The idea of combining Monte Carlo and determinis-
tic push method was first introduced in [32]. Much work follows this
idea to improve different types of personalized PageRank queries.
[44, 46] utilized the two-stage framework, which combines Monte
Carlo and deterministic push, to answer the single source query. [31]
and [49] further improved the single source query algorithm. [45]
answered several new queries which aims to find heavy hitters in a
graph based on the two-stage framework. However, in the Monte
Carlo stage, all of the previous studies just simply simulate random
walks. Unlike these studies, we propose an alternative method based
on sampling of spanning forests which is shown to be more effi-
cient than the random walk based sampling methods. Additionally,
there also exist a number of algorithms to answer the top-k person-
alized PageRank query, which are also based on matrix operations
[23, 25, 29], local methods [24, 27] and Monte Carlo techniques [8].
Specifically, matrix-based methods are based on the power method
with a given absolute error bound 𝜖𝑎 ; local methods conduct a local
search from the source node while maintaining lower and upper
bounds, and stops the search when the top-𝑘 results can be obtained
by the lower and upper bounds; Monte Carlo techniques, including
BiPPR [32], HubPPR [44] and FORA [46] are used for approximat-
ing the top-k PPR queries, which ensure a relative error 𝜖𝑟 for any
PPR value larger than 1/𝑛, with probability at least 1− 1/𝑛. TopPPR
[47] is the state-of-the-art algorithm which combines forward push,
backward push and Monte Carlo together to answer the top-𝑘 query.

Efficient Personalized PageRank Computation: A Spanning Forests Sampling Based Approach SIGMOD ’22, June 12–17, 2022, Philadelphia, PA

Matrix forest theorem and spanning forest sampling. The Kirch-
hoff matrix tree theorem is perhaps the most classic result in spectral
graph theory. Such a theorem has been generalized to spanning forest
in early years [1, 11, 12, 38]. Most previous studies on the matrix
forest theorem are based on the matrix 𝐿+𝑞𝐼 where 𝑞 is a constant [1].
Unlike the previous studies, we establish a new PageRank matrix for-
est theorem based on the 𝛽-Laplacian matrix (𝐿𝛽 = (𝛽𝐷)−1 (𝐿+𝛽𝐷)).
We note that Chung and Zhao also introduced a PageRank matrix for-
est theorem on undirected graphs [14, 15]. Their results are mainly
based on the classic Cauchy-Binet formula which are hard to extend
to directed graphs. Moreover, their matrix forest theorem is based
on the lazy random walk model, instead of the 𝛽-Laplacian matrix.

The algorithms for sampling spanning trees also have been heavily
investigated [2, 26, 48]. The most well-known algorithms include
(1) the Aldous-Broder algorithm [2] which simulates a random walk
until the whole graph is covered; and (2) the Wilson algorithm [48]
which simulates loop-erased random walks. Note that the concept of
loop-erased random walk was also studied from the probability point
of view [5, 6, 35]; and it was applied to generate spanning forests
[5, 6] with an extended Wilson algorithm. Such an extended Wilson
algorithm was also used for graph signal processing applications.
[9, 37]. Unlike these work, we develop a loop-erased 𝛼-random walk
algorithm to sample spanning forests for personalized PageRank
computation.

9 CONCLUSION
In this work, we develop several novel personalized PageRank
matrix-forest theorems which connects the personalized PageRank
values to the weights of spanning forests. Based on this connection,
we propose a new personalized PageRank computation algorithm
that samples spanning forests via simulating loop-erased 𝛼-random
walks on a graph. Compared to the previous algorithms, the proposed
algorithm is shown to be more robust w.r.t. the parameter 𝛼 . This
enable us to improve the efficiency of the state-of-the-art algorithms
when 𝛼 is small. Specifically, by using our technique, we can signifi-
cantly improve the efficiency of the state-of-the-art algorithms for
answering two types of personalized PageRank queries, including
single source and single target queries. Extensive experiments on
5 large real-life graphs demonstrate the efficiency of the proposed
algorithms.

REFERENCES
[1] Rafig Agaev and Pavel Chebotarev. 2006. Spanning Forests of a Digraph and

Their Applications. CoRR abs/math/0602061 (2006). arXiv:math/0602061
[2] David J. Aldous. 1990. The Random Walk Construction of Uniform Spanning

Trees and Uniform Labelled Trees. SIAM J. Discret. Math. 3, 4 (1990), 450–465.
[3] Reid Andersen, Christian Borgs, Jennifer T. Chayes, John E. Hopcroft, Vahab S.

Mirrokni, and Shang-Hua Teng. 2007. Local Computation of PageRank Contribu-
tions. In WAW. 150–165.

[4] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Parti-
tioning using PageRank Vectors. In FOCS. 475–486.

[5] Luca Avena, Fabienne Castell, Alexandre Gaudillière, and Clothilde Mélot. 2018.
Random forests and networks analysis. Journal of Statistical Physics 173, 3
(2018), 985–1027.

[6] Luca Avena and Alexandre Gaudillière. 2018. Two applications of random span-
ning forests. Journal of Theoretical Probability 31, 4 (2018), 1975–2004.

[7] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, and Natalia Osipova.
2007. Monte Carlo Methods in PageRank Computation: When One Iteration is
Sufficient. SIAM J. Numer. Anal. 45, 2 (2007), 890–904.

[8] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, Elena Smirnova, and
Marina Sokol. 2011. Quick Detection of Top-k Personalized PageRank Lists. In
WAW. Springer, 50–61.

[9] Simon Barthelmé, Nicolas Tremblay, Alexandre Gaudilliere, Luca Avena, and
Pierre-Olivier Amblard. 2019. Estimating the inverse trace using random forests
on graphs. arXiv preprint arXiv:1905.02086 (2019).

[10] Pavel Berkhin. 2006. Bookmark-Coloring Approach to Personalized PageRank
Computing. Internet Math. 3, 1 (2006), 41–62.

[11] Seth Chaiken. 1982. A combinatorial proof of the all minors matrix tree theorem.
SIAM Journal on Algebraic Discrete Methods 3, 3 (1982), 319–329.

[12] Pavel Chebotarev. 2008. Spanning forests and the golden ratio. Discret. Appl.
Math. 156, 5 (2008), 813–821.

[13] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-
Rong Wen. 2020. Scalable Graph Neural Networks via Bidirectional Propagation.
In NIPS.

[14] Fan Chung. 2010. PageRank as a discrete Green’s function. Geometry and
Analysis I ALM 17 (2010), 285–302.

[15] Fan Chung and Wenbo Zhao. 2010. PageRank and random walks on graphs. In
Fete of combinatorics and computer science. Springer, 43–62.

[16] Fan R. K. Chung. 1996. Spectral Graph Theory. Vol. 92. American Mathematical
Society.

[17] Fan R. K. Chung and Lincoln Lu. 2006. Survey: Concentration Inequalities and
Martingale Inequalities: A Survey. Internet Math. 3, 1 (2006), 79–127.

[18] David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant. 2018.
Approximating the Spectrum of a Graph. In KDD.

[19] Mustafa Coskun, Ananth Grama, and Mehmet Koyutürk. 2016. Efficient Pro-
cessing of Network Proximity Queries via Chebyshev Acceleration. In KDD.
1515–1524.

[20] Mustafa Coskun, Ananth Grama, and Mehmet Koyutürk. 2018. Indexed Fast
Network Proximity Querying. VLDB 11, 8 (2018), 840–852.

[21] Kun Dong, Austin R. Benson, and David Bindel. 2019. Network Density of States.
In KDD.

[22] Nicole Eikmeier and David F. Gleich. 2017. Revisiting Power-law Distributions
in Spectra of Real World Networks. In KDD. 817–826.

[23] Yasuhiro Fujiwara, Makoto Nakatsuji, Makoto Onizuka, and Masaru Kitsuregawa.
2012. Fast and Exact Top-k Search for Random Walk with Restart. VLDB (2012),
442–453.

[24] Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima, and
Makoto Onizuka. 2013. Efficient ad-hoc search for personalized PageRank. In
SIGMOD. 445–456.

[25] Yasuhiro Fujiwara, Makoto Nakatsuji, Takeshi Yamamuro, Hiroaki Shiokawa, and
Makoto Onizuka. 2012. Efficient personalized pagerank with accuracy assurance.
In KDD. 15–23.

[26] Heng Guo, Mark Jerrum, and Jingcheng Liu. 2017. Uniform sampling through
the Lovasz local lemma. In STOC. 342–355.

[27] Manish S. Gupta, Amit Pathak, and Soumen Chakrabarti. 2008. Fast algorithms
for topk personalized pagerank queries. In WWW. 1225–1226.

[28] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In WWW.
271–279.

[29] Jinhong Jung, Namyong Park, Lee Sael, and U Kang. 2017. BePI: Fast and
Memory-Efficient Method for Billion-Scale Random Walk with Restart. In SIG-
MOD. 789–804.

[30] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[31] Dandan Lin, Raymond Chi-Wing Wong, Min Xie, and Victor Junqiu Wei. 2020.
Index-Free Approach with Theoretical Guarantee for Efficient Random Walk with
Restart Query. In ICDE. 913–924.

[32] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2016. Personalized PageR-
ank Estimation and Search: A Bidirectional Approach. In WSDM. 163–172.

[33] Peter Lofgren and Ashish Goel. 2013. Personalized PageRank to a Target Node.
CoRR abs/1304.4658 (2013). arXiv:1304.4658 http://arxiv.org/abs/1304.4658

[34] Takanori Maehara, Takuya Akiba, Yoichi Iwata, and Ken-ichi Kawarabayashi.
2014. Computing Personalized PageRank Quickly by Exploiting Graph Structures.
VLDB 7, 12 (2014), 1023–1034.

[35] Philippe Marchal. 2000. Loop-erased random walks, spanning trees and Hamil-
tonian cycles. Electronic Communications in Probability 5 (2000), 39–50.

[36] PavelChebotarev. 2002. Spanning Forests of Digraphs and Limiting Probabilities
of Markov Chains. Electronic Notes in Discrete Mathematics 11 (2002), 108–116.

[37] Yusuf Yigit Pilavci, Pierre-Olivier Amblard, Simon Barthelmé, and Nicolas Trem-
blay. 2021. Graph Tikhonov Regularization and Interpolation Via Random Span-
ning Forests. IEEE Trans. Signal Inf. Process. over Networks (2021), 359–374.

[38] Elena Shamis. 1994. Graph-theoretic interpretation of the generalized row sum
method. Mathematical Social Sciences (1994), 321–333.

[39] Kijung Shin, Jinhong Jung, Lee Sael, and U Kang. 2015. BEAR: Block Elimi-
nation Approach for Random Walk with Restart on Large Graphs. In SIGMOD,
Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). 1571–1585.

[40] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W.
Mahoney. 2016. Parallel Local Graph Clustering. VLDB (2016), 1041–1052.

[41] Lloyd N Trefethen and David Bau III. 1997. Numerical linear algebra. Vol. 50.
Siam.

https://arxiv.org/abs/math/0602061
http://snap.stanford.edu/data
https://arxiv.org/abs/1304.4658
http://arxiv.org/abs/1304.4658

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA Meihao Liao, Ronghua Li, Qiangqiang Dai, and Guoren Wang

[42] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du,
and Ji-Rong Wen. 2021. Approximate Graph Propagation. In KDD, Feida Zhu,
Beng Chin Ooi, and Chunyan Miao (Eds.).

[43] Hanzhi Wang, Zhewei Wei, Junhao Gan, Sibo Wang, and Zengfeng Huang. 2020.
Personalized PageRank to a Target Node, Revisited. In KDD. 657–667.

[44] Sibo Wang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 2016.
HubPPR: Effective Indexing for Approximate Personalized PageRank. VLDB 10,
3 (2016), 205–216.

[45] Sibo Wang and Yufei Tao. 2018. Efficient Algorithms for Finding Approximate
Heavy Hitters in Personalized PageRanks. In SIGMOD. 1113–1127.

[46] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA:
Simple and Effective Approximate Single-Source Personalized PageRank. In
KDD. 505–514.

[47] Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong
Wen. 2018. TopPPR: Top-k Personalized PageRank Queries with Precision Guar-
antees on Large Graphs. In SIGMOD. 441–456.

[48] David Bruce Wilson. 1996. Generating Random Spanning Trees More Quickly
than the Cover Time. In STOC. 296–303.

[49] Hao Wu, Junhao Gan, Zhewei Wei, and Rui Zhang. 2021. Unifying the Global and
Local Approaches: An Efficient Power Iteration with Forward Push. In SIGMOD.
1996–2008.

[50] Xiao-Ming Wu, Zhenguo Li, Anthony Man-Cho So, John Wright, and Shih-Fu
Chang. 2012. Learning with Partially Absorbing Random Walks. In NIPS. 3086–
3094.

[51] Yuan Yin and Zhewei Wei. 2019. Scalable Graph Embeddings via Sparse Trans-
pose Proximities. In KDD.

[52] Minji Yoon, Jinhong Jung, and U Kang. 2018. TPA: Fast, Scalable, and Accurate
Method for Approximate Random Walk with Restart on Billion Scale Graphs. In
ICDE. 1132–1143.

[53] Fanwei Zhu, Yuan Fang, Kevin Chen-Chuan Chang, and Jing Ying. 2013. Incre-
mental and Accuracy-Aware Personalized PageRank through Scheduled Approxi-
mation. VLDB 6, 6 (2013), 481–492.

	Abstract
	1 Introduction
	2 Preliminaries
	3 PageRank matrix forest theorem
	3.1 New matrix forest theorems
	3.2 PPR computation by spanning forests

	4 Sampling Spanning Forests
	4.1 The loop-erased -random walk
	4.2 Algorithm for sampling spanning forests

	5 Single Source PPR Query
	5.1 Existing solutions
	5.2 Our solutions
	5.3 Indexing spanning forests

	6 Single Target PPR Query
	6.1 Existing solutions
	6.2 The proposed algorithm

	7 Experiments
	7.1 Experimental setup
	7.2 Effect of the parameter
	7.3 Single source query
	7.4 Index-based method for single source query
	7.5 Single target query
	7.6 Results on real-life weighted graphs
	7.7 Results with various query node distributions
	7.8 Results with very small

	8 Related Work
	9 Conclusion
	References

